
Yield Basis DAO
Security Audit
Report

AUGUST 11, 2025

Table of Contents

2

2

2

2

4

6

7

9

9

9

9

10

11

12

13

13

15

16

16

17

18

19

20

21

1. Introduction

1.1 Disclaimer

1.2 Executive Summary

1.3 Project Overview

1.4 Security Assessment Methodology

1.5 Risk Classification

1.6 Summary of Findings

2. Findings Report

2.1 Critical

2.2 High

H-1 Uninitialized specific_emissions_per_gauge in GaugeController.add_gauge()

H-2 Loss of Rewards When LiquidityGauge.totalSupply=0

H-3 Infinitely Locked VotingEscrow Positions Are Not Accounted During Voting

in GaugeController

H-4 Flash Loan Attack on Gauge Reward Distribution via get_adjustment()

Manipulation

2.3 Medium

M-1 Inflation Attack on LiquidityGauge

M-2 Incorrect Merging of Lock Ends

2.4 Low

L-1 Documentation and Code Inconsistencies

L-2 Missing Zero-Address Checks in Factory Constructor

L-3 unlock_time Can Exceed 4-Year Cap in CliffEscrow

L-4 One-Step Ownership Transfer on Critical Contracts

L-5 Incorrect Bound Checking in Factory.add_market()

3. About MixBytes

1

1. Introduction

1.1 Disclaimer

The audit makes no statements or warranties regarding the utility, safety, or security of

the code, the suitability of the business model, investment advice, endorsement of the

platform or its products, the regulatory regime for the business model, or any other claims

about the fitness of the contracts for a particular purpose or their bug-free status.

1.2 Executive Summary

Yield Basis DAO lets users lock YB token for voting power and direct emissions to pools via

gauge voting. Therefore, in this audit, we paid special attention to attacks related to

voting power manipulation, gauge weight manipulation, and reward distribution mechanisms. We

also went through our detailed checklist, covering other aspects such as business logic,

common ERC20 issues, interactions with external contracts, integer overflows, reentrancy

attacks, access control, typecast pitfalls, rounding errors and other potential issues.

Key notes and recommendations:

1.3 Project Overview

Summary

Title Description

Client Name Yield Basis

Project Name DAO

Type Vyper

Platform EVM

Timeline 24.06.2025 - 01.08.2025

We suggest adding additional boundary tests, preferably without mocking the main

contracts.

•

The LiquidityGauge requires a minimum of 10**12 shares for the initial mint; however, this

is acceptable given that the underlying asset is an 18-decimal LP token, making 1e12 wei a

relatively small value.

•

2

Scope of Audit

File Link

contracts/ dao/ GaugeController.vy GaugeController.vy

contracts/ dao/ LiquidityGauge.vy LiquidityGauge.vy

contracts/ dao/ YB.vy YB.vy

contracts/ dao/ VotingEscrow.vy VotingEscrow.vy

contracts/ dao/ CliffEscrow.vy CliffEscrow.vy

contracts/ dao/ VestingEscrow.vy VestingEscrow.vy

contracts/ Factory.vy Factory.vy

contracts/ dao/ erc4626.vy erc4626.vy

Versions Log

Date Commit Hash Note

24.06.2025 3352c612fc33e48f1a106da41f63810f31bc38be Initial

Commit

22.07.2025 4378752a0bb17169648a8711598a18372a93de7f Commit for

re-audit

01.08.2025 a97447e0d075cd584c2370ee8ac0c5bf1b8c8c19 Commit for

re-audit 2

Mainnet Deployments

The deployment verification will be conducted later after the full deployment of the

protocol into the mainnet.

3

https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/GaugeController.vy
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/LiquidityGauge.vy
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/YB.vy
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/VotingEscrow.vy
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/CliffEscrow.vy
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/VestingEscrow.vy
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/Factory.vy
https://github.com/yield-basis/yb-core/blob/cf785ae276f308ba66e40fee8dc3da7bc97dff6c/contracts/dao/erc4626.vy

1.4 Security Assessment Methodology

Project Flow

Stage Scope of Work

Interim

audit

Project Architecture Review:

OBJECTIVE: UNDERSTAND THE OVERALL STRUCTURE OF THE PROJECT AND IDENTIFY

POTENTIAL SECURITY RISKS.

Code Review with a Hacker Mindset:

OBJECTIVE: IDENTIFY AND ELIMINATE THE MAJORITY OF VULNERABILITIES, INCLUDING

THOSE UNIQUE TO THE INDUSTRY.

Code Review with a Nerd Mindset:

OBJECTIVE: ENSURE COMPREHENSIVE COVERAGE OF ALL KNOWN ATTACK VECTORS DURING

THE REVIEW PROCESS.

Review project documentation•

Conduct a general code review•

Perform reverse engineering to analyze the project's architecture

based solely on the source code

•

Develop an independent perspective on the project's architecture•

Identify any logical flaws in the design•

Each team member independently conducts a manual code review,

focusing on identifying unique vulnerabilities.

•

Perform collaborative audits (pair auditing) of the most complex

code sections, supervised by the Team Lead.

•

Develop Proof-of-Concepts (PoCs) and conduct fuzzing tests using

tools like Foundry, Hardhat, and BOA to uncover intricate logical

flaws.

•

Review test cases and in-code comments to identify potential

weaknesses.

•

Conduct a manual code review using an internally maintained

checklist, regularly updated with insights from past hacks,

research, and client audits.

•

Utilize static analysis tools (e.g., Slither, Mythril) and

vulnerability databases (e.g., Solodit) to uncover potential

undetected attack vectors.

•

4

Stage Scope of Work

Consolidation of Auditors' Reports:

OBJECTIVE: COMBINE INTERIM REPORTS FROM ALL AUDITORS INTO A SINGLE

COMPREHENSIVE DOCUMENT.

Re-audit Bug Fixing & Re-Audit:

OBJECTIVE: VALIDATE THE FIXES AND REASSESS THE CODE TO ENSURE ALL

VULNERABILITIES ARE RESOLVED AND NO NEW VULNERABILITIES ARE ADDED.

Final

audit

Final Code Verification & Public Audit Report:

OBJECTIVE: PERFORM A FINAL REVIEW AND ISSUE A PUBLIC REPORT DOCUMENTING THE

AUDIT.

Cross-check findings among auditors•

Discuss identified issues•

Issue an interim audit report for client review•

The client addresses the identified issues and provides feedback•

Auditors verify the fixes and update their statuses with supporting

evidence

•

A re-audit report is generated and shared with the client•

Verify the final code version against recommendations and their

statuses

•

Check deployed contracts for correct initialization parameters•

Confirm that the deployed code matches the audited version•

Issue a public audit report, published on our official GitHub

repository

•

Announce the successful audit on our official X account•

5

1.5 Risk Classification

Severity Level Matrix

Severity Impact: High Impact: Medium Impact: Low

Likehood: High Critical High Medium

Likehood: Medium High Medium Low

Likehood: Low Medium Low Low

Impact

Likelihood

Action Required

Finding Status

High – Theft from 0.5% OR partial/full blocking of funds (>0.5%) on the contract without

the possibility of withdrawal OR loss of user funds (>1%) who interacted with the

protocol.

•

Medium – Contract lock that can only be fixed through a contract upgrade OR one-time theft

of rewards or an amount up to 0.5% of the protocol's TVL OR funds lock with the

possibility of withdrawal by an admin.

•

Low – One-time contract lock that can be fixed by the administrator without a contract

upgrade.

•

High – The event has a 50-60% probability of occurring within a year and can be triggered

by any actor (e.g., due to a likely market condition that the actor cannot influence).

•

Medium – An unlikely event (10-20% probability of occurring) that can be triggered by a

trusted actor.

•

Low – A highly unlikely event that can only be triggered by the owner.•

Critical – Must be fixed as soon as possible.•

High – Strongly advised to be fixed to minimize potential risks.•

Medium – Recommended to be fixed to enhance security and stability.•

Low – Recommended to be fixed to improve overall robustness and effectiveness.•

Fixed – The recommended fixes have been implemented in the project code and no longer

impact its security.

•

Partially Fixed – The recommended fixes have been partially implemented, reducing the

impact of the finding, but it has not been fully resolved.

•

Acknowledged – The recommended fixes have not yet been implemented, and the finding

remains unresolved or does not require code changes.

•

6

1.6 Summary of Findings

Findings Count

Severity Count

Critical 0

High 4

Medium 2

Low 5

Findings Statuses

ID Finding Severity Status

H-1 Uninitialized specific_emissions_per_gauge in

GaugeController.add_gauge()

High Fixed

H-2 Loss of Rewards When

LiquidityGauge.totalSupply=0

High Fixed

H-3 Infinitely Locked VotingEscrow Positions Are

Not Accounted During Voting in GaugeController

High Fixed

H-4 Flash Loan Attack on Gauge Reward Distribution

via get_adjustment() Manipulation

High Fixed

M-1 Inflation Attack on LiquidityGauge Medium Fixed

M-2 Incorrect Merging of Lock Ends Medium Fixed

L-1 Documentation and Code Inconsistencies Low Fixed

L-2 Missing Zero-Address Checks in Factory

Constructor

Low Fixed

L-3 unlock_time Can Exceed 4-Year Cap in

CliffEscrow

Low Fixed

L-4 One-Step Ownership Transfer on Critical

Contracts

Low Acknowledged

7

L-5 Incorrect Bound Checking in

Factory.add_market()

Low Fixed

8

2. Findings Report

2.1 Critical

Not Found

2.2 High

H-1 Uninitialized specific_emissions_per_gauge in

GaugeController.add_gauge()

Severity High Status Fixed in 4378752a

Description

New gauges don't initialize specific_emissions_per_gauge[gauge], allowing attackers to

backrun add_gauge(), vote, and claim excess rewards in the same block, due to the extra

difference between specific_emissions - self.specific_emissions_per_gauge[gauge] (which is

specific_emissions - 0):

if block.timestamp > t:

 self.weighted_emissions_per_gauge[gauge] +=

 (specific_emissions - self.specific_emissions_per_gauge[gauge])

 * aw // 10**18

 self.specific_emissions_per_gauge[gauge] = specific_emissions

GaugeController.vy#L187

Recommendation

We recommend initializing specific_emissions_per_gauge[gauge] in add_gauge().

9

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/GaugeController.vy#L187

H-2 Loss of Rewards When LiquidityGauge.totalSupply=0

Severity High Status Fixed in 4378752a

Description

The vulnerability lies in LiquidityGauge._checkpoint():

LiquidityGauge._checkpoint()

r.integral_inv_supply = self.integral_inv_supply

if block.timestamp > r.integral_inv_supply.t:

 r.integral_inv_supply.v += unsafe_div(

 10**36 * (block.timestamp - r.integral_inv_supply.t),

 erc4626.erc20.totalSupply # ← may be 0

)

 r.integral_inv_supply.t = block.timestamp

LiquidityGauge.vy#L146

If totalSupply() == 0, unsafe_div returns 0, and v is not increased. The entire d_reward is

discarded: extra rewards accumulate in the contract but are not credited to anyone and can't

be claimed.

Recommendation

We recommend checking totalSupply() > 0 before unsafe_div, or providing an admin-only claim

function to recover unaccounted rewards if needed.

10

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/LiquidityGauge.vy#L146

H-3 Infinitely Locked VotingEscrow Positions Are Not Accounted During

Voting in GaugeController

Severity High Status Fixed in 4378752a

Description

In VotingEscrow, an infinite lock sets a constant vote bias equal to the deposit and a slope

of 0. However, in GaugeController.vote_for_gauge_weights(), vote bias is recalculated as

slope * dt, ignoring the constant bias from an infinite lock:

Prepare slopes and biases in memory

old_slope: VotedSlope = self.vote_user_slopes[msg.sender][_gauge_addr]

old_dt: uint256 = max(old_slope.end, block.timestamp) - block.timestamp

old_bias: uint256 = old_slope.slope * old_dt

new_slope: VotedSlope = VotedSlope(

 slope = slope * _user_weight // 10000, # slope = 0, so new_slope.slope = 0

 power = _user_weight,

 end = lock_end

)

new_dt: uint256 = lock_end - block.timestamp #

new_bias: uint256 = new_slope.slope * new_dt # new_bias = 0

GaugeController.vy#L235

As a result, votes from users with an infinite lock are ignored in gauge voting.

Recommendation

We recommend updating the new_bias calculation to support infinite locks.

11

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/GaugeController.vy#L235

H-4 Flash Loan Attack on Gauge Reward Distribution via get_adjustment()

Manipulation

Severity High Status Fixed in a97447e0

Description

In the GaugeController._checkpoint_gauge() function, rewards are minted and the amount

allocated to each gauge is computed for users to later claim. The gauge's adjusted weight

(aw) is calculated based on Gauge(gauge).get_adjustment(), which internally evaluates

LP_TOKEN.balanceOf(self) / LP_TOKEN.totalSupply(). The higher this ratio, the greater the

share of newly minted rewards allocated to that gauge (as aw / aw_sum). This value can be

manipulated using a flash loan, since deposit() and withdraw() can be called within a single

transaction. An attacker can temporarily inflate the aw of their gauge to increase its

reward share.

Example:

Assume there are two gauges, gauge1 and gauge2, with equal vote weights and 90% of the LP

token total supply staked in each.

An attacker flash-loans assets from gauge1's pool, mints a large amount of LP tokens,

deposits them into gauge1, and calls GC.checkpoint(gauge1) to register a much higher aw (due

to the temporary spike in balanceOf(self)). In the same transaction, the attacker withdraws

and repays the flash loan.

At this point, GaugeController holds an inflated aw for gauge1, increasing its reward ratio

(aw / aw_sum). The attacker then waits (e.g., one day), allowing time-based rewards to

accumulate under the manipulated weight. When Gauge1.claim() is called, rewards are

distributed accordingly, granting the attacker a significantly larger share.

In this scenario, waiting one day can earn the attacker an extra 1.5% of total rewards. This

figure grows with longer wait times or lower initial LP stake ratios in the targeted gauge.

Additional note:

An attacker could also use flash loans to increase the LP_TOKEN.totalSupply() in other

gauges, reducing their adjustment and thereby their reward share. This doesn't boost rewards

for gauge1, but acts as a denial-of-service (DoS) vector. However, Curve pool fees might

outweigh the gains from such an attack, making the economic incentive unclear. Moreover, the

attack is more effective in low-activity gauges, where the manipulated state can persist

longer.

An example of the test was provided in the chat with the client.

Recommendation

We recommend either prohibiting unstaking in the same transaction or always calculating

balanceOf()/totalSupply() as equal to 1.

Client's Commentary:

Client: The issue is different from what is stated, but the test correctly covers TWO issues:

1. HIGH - checkpoints should be done AFTER Gauge token transfers, not before. Fixed in

dc55c70b0a7192656ba2c8d54db093fd4a114647

2. Flashloan-assisted operations with LT combined with gauge checkpoint can temporarily disadvantage any gauge by

making its adjustment small.

The issue is even bigger: checkpoint must be done before transfers in LiquidityGauge but after in GaugeController.

12

https://github.com/yield-basis/yb-core/commit/a97447e0d075cd584c2370ee8ac0c5bf1b8c8c19

2.3 Medium

M-1 Inflation Attack on LiquidityGauge

Severity Medium Status Fixed in a97447e0

Description

LiquidityGauge inherits from ERC-4626 and passes 0 as decimals offset (i.e., 1 virtual

share).

0 — _DECIMALS_OFFSET

erc4626.__init__("YB Gauge: ..", "g(..)", lp_token, 0, "Just say no", "to EIP712")

LiquidityGauge.vy#L108

For 1 virtual share, an attacker can still perform a successful front-running attack on a

victim, but to make a profit, they would need to intercept three victim deposits that do not

exceed their own. Otherwise, the attack is more of a griefing — victims will be issued 0

shares for amounts less than the vault's balance.

Test example:

def test_inflation_attack(mock_lp, gauges, gc, yb, accounts, vote_for_gauges):

 hacker = accounts[0]

 victims = [accounts[1], accounts[2], accounts[3]]

 gauge = gauges[0]

 victimAmount = 10_000 * 10**18

 hackerAmout = victimAmount * 2

 hacker_balance_before = mock_lp.balanceOf(hacker)

 with boa.env.prank(hacker):

 gauge.mint(1, hacker)

 mock_lp.transfer(gauge.address, hackerAmout)

 for v in victims:

 with boa.env.prank(v):

 gauge.deposit(victimAmount, v)

 with boa.env.prank(hacker):

 gauge.redeem(gauge.balanceOf(hacker), hacker, hacker)

 print("Profit for hacker", mock_lp.balanceOf(hacker) - hacker_balance_before)

Recommendation

We recommend setting decimals offset higher, for example 3 (i.e., 1000 virtual shares).

append to tests/dao/test_gauge.py•

run with poetry run pytest tests/dao/test_gauge.py::test_inflation_attack -v -s•

13

https://github.com/yield-basis/yb-core/commit/a97447e0d075cd584c2370ee8ac0c5bf1b8c8c19
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/LiquidityGauge.vy#L108

Client's Commentary:

Client: Let me try something different here. Instead, let's allow to have totalSupply of the gauge being either 0 or >=

MIN_SHARES. This way, gauge forces the seed

MixBytes: After the fix: the hacker cannot use an inflation attack because the vault is restricted to a minimum of 1e12

shares.

14

M-2 Incorrect Merging of Lock Ends

Severity Medium Status Fixed in 4378752a

Description

The _merge_positions() function in VotingEscrow.vy merges the locked amounts of two users,

but does not update the slope_changes variable.

The issue is that _ve_transfer_allowed() allows merging positions with different lock end

times (e.g., UMAXTIME and max_value(uint256)):

VotingEscrow.vy#L521-L527

As a result, positions with different lock end times can be merged, which leads to incorrect

vote calculations, since slope_changes will not reflect the actual change in slope after

merging.

Recommendation

We recommend either prohibiting the merging of positions with different lock end times or

implementing logic to correctly update slope_changes during the merge operation.

15

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/dao/VotingEscrow.vy#L521-L527

2.4 Low

L-1 Documentation and Code Inconsistencies

Severity Low Status Fixed in 4378752a

Description

Several inconsistencies between documentation and implementation, as well as unused or

misleading code, were identified:

Recommendation

We recommend reviewing and updating documentation, comments, and code to ensure consistency

and clarity.

contracts/dao/GaugeController.vy: The NewGaugeWeight event is declared but never emitted

anywhere in the contract, so it is effectively dead code.

•

contracts/dao/GaugeController.vy: The admin state variable is declared with a comment but

never initialized or used; ownership checks use ownable.owner, making admin redundant or

misdocumented.

•

contracts/dao/VotingEscrow.vy:getPastVotes(): The natspec comment refers to a clock()

configured to use block numbers, but the implementation uses timestamps exclusively. The

documentation is misleading.

•

contracts/dao/VotingEscrow.vy:increase_amount(): The @notice documentation states it

deposits additional tokens for msg.sender without modifying unlock time, but the function

signature allows specifying a different _for address. The docs do not mention this

parameter.

•

contracts/dao/CliffEscrow.vy:__init__(): The constructor parameter is named recepient

(misspelled).

•

contracts/Factory.vy:set_gauge_cotroller(): Function name is misspelled as

set_gauge_cotroller but the event is SetGaugeController (missing 'n' in the function

name).

•

16

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f

L-2 Missing Zero-Address Checks in Factory Constructor

Severity Low Status Fixed in 4378752a

Description

Only price_oracle_impl is validated; amm_impl and lt_impl are not. If either is zero,

create_from_blueprint will revert, bricking the factory.

Factory.vy#L110

Recommendation

We recommend asserting amm_impl and lt_impl are not zero.

17

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f
https://github.com/yield-basis/yb-core/blob/3352c612fc33e48f1a106da41f63810f31bc38be/contracts/Factory.vy#L110

L-3 unlock_time Can Exceed 4-Year Cap in CliffEscrow

Severity Low Status Fixed in 4378752a

Description

Only a future check is enforced in the constructor; no maximum limit is set for unlock_time.

This allows unlock_time to exceed the intended 4-year cap, breaking VotingEscrow

assumptions.

Recommendation

We recommend enforcing a maximum unlock_time consistent with the 4-year cap used in

VotingEscrow.

18

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f

L-4 One-Step Ownership Transfer on Critical Contracts

Severity Low Status Acknowledged

Description

Factory, LiquidityGauge, and GaugeController allow instant admin change. This risks fund

loss in case of a human error during ownership transfers.

Recommendation

We recommend using two-step ownership transfers.

Client's Commentary:

Contracts are going to be owned by the DAO which executes everything by voting. 2-step processes usually do not play well

with that.

19

L-5 Incorrect Bound Checking in Factory.add_market()

Severity Low Status Fixed in 4378752a

Description

In Factory.vy:add_market():

i: uint256 = self.market_count

if i < MAX_MARKETS:

 self.market_count = i + 1

self.markets[i] = market

If self.market_count == MAX_MARKETS, the code will overwrite the last market, which is

unintended.

Recommendation

We recommend checking self.market_count < MAX_MARKETS.

20

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f

3. About MixBytes

MixBytes is a leading provider of smart contract audit and research services, helping

blockchain projects enhance security and reliability. Since its inception, MixBytes has been

committed to safeguarding the Web3 ecosystem by delivering rigorous security assessments and

cutting-edge research tailored to DeFi projects.

Our team comprises highly skilled engineers, security experts, and blockchain researchers

with deep expertise in formal verification, smart contract auditing, and protocol research.

With proven experience in Web3, MixBytes combines in-depth technical knowledge with a

proactive security-first approach.

Why MixBytes

Our Services

MixBytes is dedicated to securing the future of blockchain technology by delivering

unparalleled security expertise and research-driven solutions. Whether you are launching a

DeFi protocol or developing an innovative dApp, we are your trusted security partner.

Contact Information

https://mixbytes.io/

https://github.com/mixbytes/audits_public

hello@mixbytes.io

https://x.com/mixbytes

Proven Track Record: Trusted by top-tier blockchain projects like Lido, Aave, Curve, and

others, MixBytes has successfully audited and secured billions in digital assets.

•

Technical Expertise: Our auditors and researchers hold advanced degrees in cryptography,

cybersecurity, and distributed systems.

•

Innovative Research: Our team actively contributes to blockchain security research,

sharing knowledge with the community.

•

Smart Contract Audits: A meticulous security assessment of DeFi protocols to prevent

vulnerabilities before deployment.

•

Blockchain Research: In-depth technical research and security modeling for Web3 projects.•

Custom Security Solutions: Tailored security frameworks for complex decentralized

applications and blockchain ecosystems.

•

21

https://mixbytes.io/
https://github.com/mixbytes/audits_public
mailto:hello@mixbytes.io
https://x.com/mixbytes

