
YieldBasis Security Review
Pashov Audit Group

Conducted by: Said, mahdiRostami, ast3ros, 0xbepresent, Pain, grearlake,
0xAlexSR

March 26th 2025 - April 1st 2025



Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About YieldBasis
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings
[M-01] _calculate_values assumes new_total_value is
never negative
[M-02] withdraw does not reduce staked data when
staker is caller
[M-03] Token rebase miscalculation during position
losses
[M-04] State not updated when staker address changes
[M-05] Rebase bypass possible through _transfer()
[M-06] set_rate() resets accrued fees causing fee loss
[M-07] Token miscalculation in withdraw_admin_fees()
inflates shares
[M-08] Incorrect total supply calculated during admin
fee withdrawal
[M-09] set_allocator() state update missing causes
incorrect balances

8.2. Low Findings
[L-01] Staker contract missing in LT contract post-
creation
[L-02] min_admin_fee lacks initialization and update
[L-03] deposit fails to account for cases where
value_before equals 0

1

3

3

3

3

4

4
4
5

5

6

8

8

8

10

13

14

15

18

21

21

22

25

25

25

26



[L-04] fill_staker_vpool() fails without address setters

2

28



1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the yield-basis/yb-core repository was done by
Pashov Audit Group, with a focus on the security aspects of the application's smart
contracts implementation.

4. About YieldBasis
YieldBasis aims to eliminate impermanent loss by leveraging liquidity positions
such that their value tracks the underlying asset, while still earning trading fees. By
dynamically adjusting leverage within Curve-style AMMs, the approach achieves
sustainable yield while closely tracking the price of the underlying asset.

3

https://github.com/pashov/audits
https://twitter.com/pashovkrum


5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

4



5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - d29f47000c80851bb6c4ad92463b8ddb48cad944

fixes review commit hash - d9b8eebf84b2bca4b761a86080fe381ffff6a0ba

Scope

The following smart contracts were in scope of the audit:

LT

AMM

Factory

5

https://github.com/yield-basis/yb-core/tree/d29f47000c80851bb6c4ad92463b8ddb48cad944
https://github.com/yield-basis/yb-core/tree/d9b8eebf84b2bca4b761a86080fe381ffff6a0ba


7. Executive Summary
Over the course of the security review, Said, mahdiRostami, ast3ros, 0xbepresent,
Pain, grearlake, 0xAlexSR engaged with YieldBasis to review YieldBasis. In this
period of time a total of 13 issues were uncovered.

Protocol Summary
Protocol Name YieldBasis

Repository https://github.com/yield-basis/yb-core

Date March 26th 2025 - April 1st 2025

Protocol Type Yield optimizer

Findings Count
Severity Amount

Medium 9

Low 4

Total Findings 13

6



Summary of Findings
ID Title Severity Status

[M-01] _calculate_values assumes new_total_value
is never negative Medium Resolved

[M-02] withdraw does not reduce staked data when
staker is caller Medium Resolved

[M-03] Token rebase miscalculation during
position losses Medium Resolved

[M-04] State not updated when staker address
changes Medium Resolved

[M-05] Rebase bypass possible through _transfer() Medium Resolved

[M-06] set_rate() resets accrued fees causing fee
loss Medium Resolved

[M-07] Token miscalculation in
withdraw_admin_fees() inflates shares Medium Resolved

[M-08] Incorrect total supply calculated during
admin fee withdrawal Medium Resolved

[M-09] set_allocator() state update missing causes
incorrect balances Medium Resolved

[L-01] Staker contract missing in LT contract post-
creation Low Resolved

[L-02] min_admin_fee lacks initialization and
update Low Resolved

[L-03] deposit fails to account for cases where
value_before equals 0 Low Resolved

[L-04] fill_staker_vpool() fails without address
setters Low Resolved

7



8. Findings

8.1. Medium Findings

[M-01] _calculate_values  assumes
new_total_value  is never negative

Severity
Impact: High

Likelihood: Low

Description
When _calculate_values  is performed, it will calculate new_total_value
based on the value_change , and will return it as total  where it is converted
to uint256 .

8



@internal
@view
def _calculate_values(p_o: uint256) -> LiquidityValuesOut:
    prev: LiquidityValues = self.liquidity
    staker: address = self.staker
    staked: int256 = 0
    if staker != empty(address):
        staked = convert(self.balanceOf[self.staker], int256)
    supply: int256 = convert(self.totalSupply, int256)

    f_a: int256 = convert(
        10**18 - (10**18 - self.min_admin_fee) * self.sqrt(convert
        //(10**36 - staked * 10**36 // supply, uint256)) // 10**18,
        int256)

    cur_value: int256 = convert((staticcall self.amm.value_oracle
    //()).value * 10**18 // p_o, int256)
    prev_value: int256 = convert(prev.total, int256)
>>> value_change: int256 = cur_value - (prev_value + prev.admin)

    v_st: int256 = convert(prev.staked, int256)
    v_st_ideal: int256 = convert(prev.ideal_staked, int256)
    # ideal_staked is set when some tokens are transferred to staker address

>>> dv_use: int256 = value_change * (10**18 - f_a) // 10**18
    prev.admin += (value_change - dv_use)

    dv_s: int256 = dv_use * staked // supply
    if dv_use > 0:
        dv_s = min(dv_s, max(v_st_ideal - v_st, 0))

>>> new_total_value: int256 = prev_value + dv_use
    new_staked_value: int256 = v_st + dv_s

    # Solution of:
    # staked - token_reduction       new_staked_value
    # -------------------------  =  -------------------
    # supply - token_reduction         new_token_value
    token_reduction: int256 = unsafe_div(      
      staked*new_total_value-new_staked_value*supply,
      new_total_value-new_staked_value
    )
    # token_reduction = 0 if nothing is staked
    # XXX need to consider situation when denominator is very close to zero

    # Supply changes each time:
    # value split reduces the amount of staked tokens (but not others),
    # and this also reduces the supply of LP tokens

    return LiquidityValuesOut(
        admin=prev.admin,
>>>     total=convert(new_total_value, uint256),
        ideal_staked=prev.ideal_staked,
        staked=convert(new_staked_value, uint256),
        staked_tokens=convert(staked - token_reduction, uint256),
        supply_tokens=convert(supply - token_reduction, uint256)
    )

It is possible for dv_use  to exceed prev_value , resulting in a negative
new_total_value . This would also cause the conversion to uint256  to revert.

Recommendations
9



Consider setting new_total_value  to 0 when it becomes negative.

[M-02] withdraw  does not reduce staked
data when staker is caller

Severity
Impact: High

Likelihood: Low

Description
When  withdraw  is called, it updates liquidity.total  based on the amount of
shares burned, but it doesn't check if the caller is the staker . If the staker
calls the withdraw  operation, it should also update and decrease the staked
value.

10



@external
@nonreentrant
def withdraw(  
  shares:uint256,
  min_assets:uint256,
  receiver:address=msg.sender
) -> uint256:
    """
    @notice Method to withdraw assets (e.g. like BTC) by spending shares 
      (e.g. like yield-bearing BTC)
    @param shares Shares to withdraw
    @param min_assets Minimal amount of assets to receive 
      (important to calculate to exclude sandwich attacks)
  
         @param receiver Receiver of the shares who is optional. If not specified - re
    """
    assert shares > 0, "Withdrawing nothing"

    amm: LevAMM = self.amm
    liquidity_values: LiquidityValuesOut = self._calculate_values
      (self._price_oracle_w())
    supply: uint256 = liquidity_values.supply_tokens
    self.liquidity.admin = liquidity_values.admin
    self.liquidity.total = liquidity_values.total
    self.liquidity.staked = liquidity_values.staked
    self.totalSupply = supply
    staker: address = self.staker
    if staker != empty(address):
        self.balanceOf[staker] = liquidity_values.staked_tokens
    state: AMMState = staticcall amm.get_state()

    admin_balance: uint256 = convert(max(liquidity_values.admin, 0), uint256)

    withdrawn: Pair = extcall amm._withdraw(10**18 * liquidity_values.total // 
    //(liquidity_values.total + admin_balance) * shares // supply)
    assert extcall COLLATERAL.transferFrom
      (amm.address, self, withdrawn.collateral)
    crypto_received: uint256 = extcall COLLATERAL.remove_liquidity_fixed_out
      (withdrawn.collateral, 0, withdrawn.debt, 0)

    self._burn(msg.sender, shares)  # Changes self.totalSupply
>>> self.liquidity.total = liquidity_values.total * (supply - shares) // supply
    if liquidity_values.admin < 0:
  
                 # If admin fees are negative - we are skipping them, so reduce propor
        self.liquidity.admin = liquidity_values.admin * convert
        //(supply - shares, int256) // convert(supply, int256)
    assert crypto_received >= min_assets, "Slippage"
    assert extcall STABLECOIN.transfer(amm.address, withdrawn.debt)
    assert extcall DEPOSITED_TOKEN.transfer(receiver, crypto_received)

    log Withdraw(      
      sender=msg.sender,
      receiver=receiver,
      owner=msg.sender,
      assets=crypto_received,
      shares=shares
    )
    return crypto_received

If the liquidity.staked  value is not updated properly, it will use the wrong
value when _calculate_values  is called, resulting in incorrect
staked_tokens  and supply_tokens .

11



@internal
@view
def _calculate_values(p_o: uint256) -> LiquidityValuesOut:
    prev: LiquidityValues = self.liquidity
    staker: address = self.staker
    staked: int256 = 0
    if staker != empty(address):
        staked = convert(self.balanceOf[self.staker], int256)
    supply: int256 = convert(self.totalSupply, int256)

    f_a: int256 = convert(
        10**18 - (10**18 - self.min_admin_fee) * self.sqrt(convert
        //(10**36 - staked * 10**36 // supply, uint256)) // 10**18,
        int256)

    cur_value: int256 = convert((staticcall self.amm.value_oracle
    //()).value * 10**18 // p_o, int256)
    prev_value: int256 = convert(prev.total, int256)
    value_change: int256 = cur_value - (prev_value + prev.admin)

    v_st: int256 = convert(prev.staked, int256)
    v_st_ideal: int256 = convert(prev.ideal_staked, int256)
    # ideal_staked is set when some tokens are transferred to staker address

    dv_use: int256 = value_change * (10**18 - f_a) // 10**18
    prev.admin += (value_change - dv_use)

    dv_s: int256 = dv_use * staked // supply
    if dv_use > 0:
        dv_s = min(dv_s, max(v_st_ideal - v_st, 0))

    new_total_value: int256 = prev_value + dv_use
    new_staked_value: int256 = v_st + dv_s

    # Solution of:
    # staked - token_reduction       new_staked_value
    # -------------------------  =  -------------------
    # supply - token_reduction         new_token_value
>>> token_reduction: int256 = unsafe_div(  
  staked*new_total_value-new_staked_value*supply,
  new_total_value-new_staked_value
)
    # token_reduction = 0 if nothing is staked
    # XXX need to consider situation when denominator is very close to zero

    # Supply changes each time:
    # value split reduces the amount of staked tokens (but not others),
    # and this also reduces the supply of LP tokens

    return LiquidityValuesOut(
        admin=prev.admin,
        total=convert(new_total_value, uint256),
        ideal_staked=prev.ideal_staked,
        staked=convert(new_staked_value, uint256),
>>>     staked_tokens=convert(staked - token_reduction, uint256),
>>>     supply_tokens=convert(supply - token_reduction, uint256)
    )

Recommendations
Update the staker's liquidity.staked  if the staker calls withdraw , or prevent
the staker  from calling the withdraw  operation.

12



[M-03] Token rebase miscalculation during
position losses

Severity
Impact: Low

Likelihood: High

Description
When the position is at a loss (dv_use < 0), the token reduction should
theoretically be zero:

@internal
@view
def _calculate_values(p_o: uint256) -> LiquidityValuesOut:
    ...
    token_reduction: int256 = unsafe_div(      
      staked*new_total_value-new_staked_value*supply,
      new_total_value-new_staked_value
    )
    ...

We have the numerator of the calculation should evaluate to zero:

staked * new_total_value - new_staked_value * supply 
= staked * (prev_value + dv_use) - (v_st + dv_s) * supply
= staked * (prev_value + dv_use) - (v_st + dv_use * staked / supply) * supply
= staked * prev_value - v_st * supply
= staked * prev_value - (staked * prev_value / supply) * supply 

  (because v_st / staked == prev_value / supply => v_st = staked *  prev_value / suppl
= 0

However, due to integer division rounding, the calculation may result in a non-
zero value, causing an incorrect token reduction. It can lead to unfair
distribution of value between staked and unstaked liquidity providers.

Recommendations
When the position losses, set token_reduction  = 0.

13



[M-04] State not updated when staker
address changes

Severity
Impact: High

Likelihood: Low

Description
When changing the staker address via the set_staker  function in the LT
contract, the code fails to update important accounting variables
liquidity.staked  and liquidity.ideal_staked . This creates an accounting
mismatch in the protocol.

@external
    @nonreentrant
    def set_staker(staker: address):
        self._check_admin()
        self.staker = staker
        log SetStaker(staker=staker)

This creates a mismatch between:

The staker address ( self.staker ) which points to the new staker
The accounting variables ( liquidity.staked  and liquidity.ideal_staked )
which still reflect values from the previous staker

When _calculate_values  runs after the staker has been changed. staked  is
token balance from the new staker address. v_st  uses historical accounting
values from the old staker.

token_reduction  is calculated:

token_reduction: int256 = unsafe_div(  
  staked*new_total_value-new_staked_value*supply,
  new_total_value-new_staked_value
)

Let's consider a scenario:

14



Admin calls set_staker , changing self.staker from Addr_A (holding many
tokens) to Addr_B (holding very few tokens).
liquidity.staked  (the value variable) remains high, reflecting value
accrued/assigned historically to the staked portion when Addr_A was the
staker.
The next time _calculate_values  runs:
It uses staked  = self.balanceOf[Addr_B] (very low token count).
It uses new_staked_value , derived from the high historical
liquidity.staked .
The ratio staked / supply  (low / total) will be much smaller than the ratio
new_staked_value / new_total_value  (high / total).

Since the token ratio is too low compared to the value ratio, the system needs
to increase the number of tokens held by the staker (Addr_B). The system
mints new tokens out of thin air and assigns them to the new staker (Addr_B)
simply because the staker address was changed. This newly minted value
comes from diluting all other token holders.

Recommendations
Update the staked  and ideal_staked  if there's a change in staker address.

[M-05] Rebase bypass possible through
_transfer()

Severity
Impact: High

Likelihood: Low

Description
The token reduction mechanism, which is critical for maintaining accurate
staked liquidity accounting, is applied only during direct deposits to the staker.

15



# File: LT.vy
...
238:     token_reduction: int256 = unsafe_div(  
  staked*new_total_value-new_staked_value*supply,
  new_total_value-new_staked_value
)
...
246:     return LiquidityValuesOut(
247:         admin=prev.admin,
248:         total=convert(new_total_value, uint256),
249:         ideal_staked=prev.ideal_staked,
250:         staked=convert(new_staked_value, uint256),
251:@>       staked_tokens=convert(staked - token_reduction, uint256),
252:@>       supply_tokens=convert(supply - token_reduction, uint256)
253:     )

However, if a user deposits to a non-staker  account and later transfers the
shares to the staker, the token reduction is not applied because the
recalculation in the _transfer  function only adjusts the staked liquidity based
on the transfer amount without invoking the token reduction logic. This can be
seen in the _transfer  function:

# File: LT.vy
548: @internal
549: def _transfer(_from: address, _to: address, _value: uint256):
...
564:         elif _to == staker:
565:             # Increase the staked part
566:             d_staked_value: uint256 = liquidity.total * _value // 
// liquidity.supply_tokens
567:@>           liquidity.staked += d_staked_value
568:             if liquidity.staked_tokens > 10**10:
569:                 liquidity.ideal_staked = liquidity.ideal_staked * 
//(liquidity.staked_tokens + _value) // liquidity.staked_tokens
570:             else:
571:                 # To exclude division by zero and numerical noise errors
572:                 liquidity.ideal_staked += d_staked_value
573:@>       self.liquidity.staked = liquidity.staked
574:         self.liquidity.ideal_staked = liquidity.ideal_staked
575: 
576:     self.balanceOf[_from] -= _value
577:     self.balanceOf[_to] += _value
...

The following test shows how depositing to a non-staker and then transferring
to the staker  will make both staked  and staked_balance  non-zero (token
reduction bypass).

16



# File: tests/lt/test_unitary.py
def test_deposit_then_transfer_to_staker(  
  yb_lt,
  collateral_token,
  yb_allocated,
  seed_cryptopool,
  yb_staker,
  accounts,
  admin
):
    user = accounts[0]
    p = 100_000
    amount = 10**18

    with boa.env.prank(admin):  # Set the staker
        yb_lt.set_staker(yb_staker.address)
        assert yb_lt.staker() == yb_staker.address

    # First deposit just to populate the pool and set the staker
    collateral_token._mint_for_testing(accounts[1], amount)
    with boa.env.prank(accounts[1]):
        shares = yb_lt.deposit(amount, p * amount, int(amount * 0.9999))

    # 1. Deposit but staking this time using the deposit -> transfer method
    collateral_token._mint_for_testing(user, amount)
    with boa.env.prank(user):
        shares = yb_lt.deposit(amount, p * amount, int(amount * 0.9999))
    with boa.env.prank(user): # Transfer to staker
        yb_lt.transfer(yb_staker, shares)

    # 2. Rebase mechanism has applied but the `staked` is not zero
    post_values = yb_lt.internal._calculate_values(100_000 * 10**18)
    assert post_values[3] > 0 # staked > 0
    assert post_values[4] > 0 # staked_tokens > 0

There is a discrepancy because if user desposits directly to the staker
account, the token reduction would have been applied, resulting in zero staked
amounts.

17



# File: tests/lt/test_unitary.py
def test_deposit_directly_to_staker(  
  yb_lt,
  collateral_token,
  yb_allocated,
  seed_cryptopool,
  yb_staker,
  accounts,
  admin
):
    user = accounts[0]
    p = 100_000
    amount = 10**18

    # First deposit just to populate the pool and set the staker
    with boa.env.prank(admin):  # Set the staker
        yb_lt.set_staker(yb_staker.address)
        assert yb_lt.staker() == yb_staker.address
    collateral_token._mint_for_testing(accounts[1], amount)
    with boa.env.prank(accounts[1]):
        shares = yb_lt.deposit(amount, p * amount, int(amount * 0.9999))

    # 1. Deposit but staking directly to staker
    collateral_token._mint_for_testing(user, amount)
    with boa.env.prank(user):
        # Deposit
        shares = yb_lt.deposit(amount, p * amount, int
          (amount * 0.9999), yb_lt.staker())
        assert shares == yb_lt.balanceOf(yb_lt.staker())

    # 2. Rebase mechanism has applied so the `staked` is zero
    post_values = yb_lt.internal._calculate_values(100_000 * 10**18)
    assert post_values[3] == 0 # staked == 0
    assert post_values[4] == 0 # staked_tokens == 0

Recommendations
Ensure that the token reduction mechanism is consistently applied regardless
of whether the deposit occurs directly to the staker or via a subsequent transfer.

[M-06] set_rate()  resets accrued fees
causing fee loss

Severity
Impact: High

Likelihood: Low

Description

18



The AMM::set_rate  function is used to change the interest rate applied to
borrowed debt over time. Internally, it resets the rate multiplier ( rate_mul )
based on the current time and accrued interest up to that point.

# File: AMM.vy
172: def set_rate(rate: uint256) -> uint256:
...
178:     assert msg.sender == DEPOSITOR, "Access"
179:     rate_mul: uint256 = self._rate_mul()
180:@>   self.rate_mul = rate_mul
181:@>   self.rate_time = block.timestamp
182:     self.rate = rate
183:     log SetRate(rate=rate, rate_mul=rate_mul, time=block.timestamp)
184:     return rate_mul

However, if AMM::collect_fees()  is not called beforehand, any accrued
interest from the old rate is not collected, meaning that fees owed to the
protocol for the previous period are effectively erased.

This occurs because AMM::collect_fees()  relies on AMM::_debt_w() , which
uses the formula:

# File: AMM.vy
196:     debt: uint256 = self.debt * rate_mul // self.rate_mul

In this formula:

self.rate_mul  is updated during set_rate() .
If set_rate()  is called before fees are collected, the base rate_mul  is reset
to the new value, and the accrued delta is lost.
Subsequent calls to collect_fees()  will compute fees relative only to the
time after the new rate was set, not accounting for the previous interest
period.

The provided test confirms this behavior:

After interest accrues, admin_fees()  correctly reflects fees > 0 (step 2).
After set_rate  is called, admin_fees()  drops to 0 (step 4), proving that the
fees were silently wiped due to the rate reset.

19



def test_fees_loss_on_set_rate
  (token_mock, price_oracle, amm_deployer, accounts, admin):
    # Deploy tokens and AMM (using 18 decimals for simplicity)
    stablecoin = token_mock.deploy('Stablecoin', 'USD', 18)
    collateral_decimals = 18
    collateral_token = token_mock.deploy
      ('Collateral', 'COL', collateral_decimals)
    with boa.env.prank(admin):
        price_oracle.set_price(10**18)
        amm = amm_deployer.deploy(
            admin,
            stablecoin.address,
            collateral_token.address,
            2 * 10**18,    # leverage = 2x
            10**16,        # fee
            price_oracle.address
        )
        amm.set_rate(10**18)  # Set initial rate
    # Fund AMM with tokens
    with boa.env.prank(admin):
        stablecoin._mint_for_testing(amm.address, 10**12 * 10**18)
        stablecoin._mint_for_testing(admin, 10**12 * 10**18)
        collateral_token._mint_for_testing(admin, 10**12 * 10**18)
        stablecoin.approve(amm.address, 2**256 - 1)
        collateral_token.approve(amm.address, 2**256 - 1)
    
    # 1. Make a deposit to generate some minted debt (and thus potential fees)
    d_collateral = 10**18
    d_debt = 10**17
    with boa.env.prank(admin):
        amm._deposit(d_collateral, d_debt)

    # 2. Simulate passage of time to increase the accrued interest
    boa.env.time_travel(60 * 60 * 24)
    fees_before_set_rate = amm.admin_fees()
    assert fees_before_set_rate > 0

  
         # 3. Call set_rate without prior fee collection, which resets the rate multip
    new_rate = 11**17  # arbitrary new rate
    with boa.env.prank(admin):
        amm.set_rate(new_rate)
    
    new_fees = amm.admin_fees()

    # 4. The test asserts that the new computed fees are lower than before,
    # proving that fees accrued 
      (if any) are lost when set_rate is called without collecting fees.
    assert new_fees == 0
    assert fees_before_set_rate > new_fees

Recommendations
Enforce fee collection before rate updates. Add logic in set_rate()  to require
collect_fees()  to be called first. For example:

# File: AMM.vy
def set_rate(rate: uint256) -> uint256:
    self.collect_fees()
    ...

20



[M-07] Token miscalculation in
withdraw_admin_fees()  inflates shares

Severity
Impact: Medium

Likelihood: Medium

Description
In the LT contract, the withdraw_admin_fees  function is designed to mint
Yield Basis tokens to the fee receiver. However, there's a calculation error that
results in excessive token minting. The issue lies in the to_mint  calculation:

def withdraw_admin_fees():
    ...
    to_mint: uint256 = v.supply_tokens * new_total // v.total
    ...

This formula mints an amount equal to the entire new supply, not just the
incremental difference representing admin fees. It leads to inflation of token
supply and dilution of existing holders.

Recommendations
To mint only the incremental number of tokens representing the admin fees:

- to_mint: uint256 = v.supply_tokens * new_total // v.total
+ to_mint: uint256 = v.supply_tokens * new_total // v.total - v.supply_tokens

[M-08] Incorrect total supply calculated
during admin fee withdrawal

Severity
Impact: Medium

Likelihood: Medium

21



Description
In the LT contract, when the withdraw_admin_fees  function is called, the
_calculate_values  function is executed to recalculate all liquidity values.
During this calculation, the total supply can be reduced due to a token
reduction mechanism (downward rebasing) that adjusts the number of tokens
based on value changes.

However, while the function updates various liquidity parameters, it fails to
update self.totalSupply  to the latest value v.supply_tokens  before minting
new tokens to the fee receiver. This mistake leads to an incorrect total supply
calculation after admin fees are withdrawn.

def withdraw_admin_fees():
    ...
    v: LiquidityValuesOut = self._calculate_values(self._price_oracle_w())
    ...
    self.liquidity.total = new_total
    self.liquidity.admin = 0
    self.liquidity.staked = v.staked
    staker: address = self.staker
    if staker != empty(address):
        self.balanceOf[staker] = v.staked_tokens

    log WithdrawAdminFees(receiver=fee_receiver, amount=to_mint)

Recommendations
Update self.totalSupply  to the recalculated value before minting tokens to
the fee receiver.

[M-09] set_allocator()  state update
missing causes incorrect balances

Severity
Impact: Medium

Likelihood: Medium

Description
In the set_allocator  function, the contract intends to adjust the allocation for
a given allocator by comparing the new amount  with the old_allocation

22



stored in self.allocators[allocator] . However, the function does not
update the self.allocators  mapping with the new amount . As a
consequence, every call to set_allocator  will always see the previous
allocation (old_allocation) as zero, and any subsequent logic that relies on
self.allocators  (for example, when an allocator attempts to withdraw their
assets) will be based on zero values.

# File: Factory.vy
212: @external
213: @nonreentrant
214: def set_allocator(allocator: address, amount: uint256):
215:     assert msg.sender == self.admin, "Access"
216:     assert allocator != self.mint_factory, "Minter"
217:     assert allocator != empty(address)
218: 
219:     old_allocation: uint256 = self.allocators[allocator]
220:     if amount > old_allocation:
221:         # Use transferFrom
222:         extcall STABLECOIN.transferFrom
  (allocator, self, amount - old_allocation)
223:     elif amount < old_allocation:
224: 
           # Allow to take back the allocation via transferFrom, but not more than the
225:         extcall STABLECOIN.approve(allocator, 
  (staticcall STABLECOIN.allowance(self, allocator)) + old_allocation - amount)
226: 
227:     log SetAllocator(allocator=allocator, amount=amount)

In this function, after comparing the new allocation amount with
old_allocation  (line 220) and performing the appropriate token transfers or
approvals (lines 220-225), the contract never updates the state variable. Thus,
self.allocators[allocator]  remains unchanged (likely zero), so any future
operations (such as withdrawing assets) will calculate allocation based on an
incorrect or zero value.

The following test demostrates how the self.allocators  is not updated:

# File: tests/lt/test_factory.py
def test_allocator_not_registered(factory, admin, accounts, stablecoin):
    # Mint tokens and set allocator using admin privileges
    with boa.env.prank(accounts[0]):
        stablecoin.approve(factory.address, 2**256-1)
    with boa.env.prank(admin):
        stablecoin._mint_for_testing(accounts[0], 10**18)
        factory.set_allocator(accounts[0], 10**18)

    deposit = factory.allocators(accounts[0])
    assert deposit == 0

Recommendations

23



Modify the function to update self.allocators[allocator]  with the new
allocation value.

def set_allocator(allocator: address, amount: uint256):
    ...
+   self.allocators[allocator] = amount
    ...

24



8.2. Low Findings

[L-01] Staker contract missing in LT
contract post-creation

In the Factory contract, the add_market  function creates a staker contract for
the market if staker_impl  is provided. However, the code doesn't set this
newly created staker in the corresponding LT contract.

def add_market(
    pool: CurveCryptoPool,
    fee: uint256,
    rate: uint256,
    debt_ceiling: uint256
) -> Market:
    ...
    if self.staker_impl != empty(address):
        market.staker = create_from_blueprint(
            self.staker_impl,
            market.lt)

    ...

Therefore, the staker exists but isn't properly configured in the LT contract. As
a result, the staking functionality won't work properly until the staker is
manually set in a separate transaction.

It's recommended to set the staker for the LT in add_market function.

if self.staker_impl != empty(address):
        market.staker = create_from_blueprint(
            self.staker_impl,
            market.lt)
+       extcall LT(market.lt).set_staker(market.staker)

[L-02] min_admin_fee  lacks initialization and
update

In LT.vy , the variable min_admin_fee  is declared as a public and is used in the
fee calculation within the _calculate_values  function:

25



# File: LT.vy
136: min_admin_fee: public(uint256)
...
204: def _calculate_values(p_o: uint256) -> LiquidityValuesOut:
...
212:     f_a: int256 = convert(
213:         10**18 - (10**18 - self.min_admin_fee) * self.sqrt(convert
//(10**36 - staked * 10**36 // supply, uint256)) // 10**18,
214:         int256)
...

The calculation for f_a  uses self.min_admin_fee  to determine the minimum
fee that should be applied. However, there is no function in the contract that
allows an administrator to set or update min_admin_fee , nor is it initialized to
a nonzero value upon contract deployment. As a consequence,
self.min_admin_fee  remains 0.

The following test demostrates how min_admin_fee  is zero at the contract
deploy, also there is no setter to adjust it.

File: tests/lt/test_factory.py
51: 
52: def test_min_admin_fee_default
  (factory, cryptopool, seed_cryptopool, lt_interface, admin):
53:     fee = int(0.007e18)
54:     rate = int(0.1e18 / (365 * 86400))
55:     ceiling = 100 * 10**6 * 10**18
56: 
57:     with boa.env.prank(admin):
58:         market = factory.add_market(cryptopool.address, fee, rate, ceiling)
59:     # Assert that LT.min_admin_fee remains 0 (no setter to adjust it)
60:     lt = market[3]
61:     assert lt_interface.at(lt).min_admin_fee() == 0

Update the constructor set self.min_admin_fee  to a nonzero value that reflects
the intended minimum admin fee. Also, implement a function (with proper
access control) to update min_admin_fee .

[L-03] deposit  fails to account for cases
where value_before  equals 0

When deposit  is called with a non-zero total supply, it calculates shares using
the formula: supply * value_after // value_before - supply .

26



@external
@nonreentrant
def deposit(  
  assets:uint256,
  debt:uint256,
  min_shares:uint256,
  receiver:address=msg.sender
) -> uint256:
    """
    @notice Method to deposit assets (e.g. like BTC) to receive shares 
      (e.g. like yield-bearing BTC)
    @param assets Amount of assets to deposit
    @param debt Amount of debt for AMM to take (approximately BTC * btc_price)
    @param min_shares Minimal amount of shares to receive 
      (important to calculate to exclude sandwich attacks)
  
         @param receiver Receiver of the shares who is optional. If not specified - re
    """
    amm: LevAMM = self.amm
    assert extcall STABLECOIN.transferFrom(amm.address, self, debt)
    assert extcall DEPOSITED_TOKEN.transferFrom(msg.sender, self, assets)
    lp_tokens: uint256 = extcall COLLATERAL.add_liquidity
      ([debt, assets], 0, amm.address)
    p_o: uint256 = self._price_oracle_w()

    supply: uint256 = self.totalSupply
    shares: uint256 = 0

    liquidity_values: LiquidityValuesOut = empty(LiquidityValuesOut)
    if supply > 0:
        liquidity_values = self._calculate_values(p_o)

    v: ValueChange = extcall amm._deposit(lp_tokens, debt)
    value_after: uint256 = v.value_after * 10**18 // p_o

    # Value is measured in USD
  
         # Do not allow value to become larger than HALF of the available stablecoins 
  
         # If value becomes too large - we don't allow to deposit more to have a buffe
    assert staticcall amm.max_debt() // 2 >= v.value_after, "Debt too high"

    staker: address = self.staker

    if supply > 0:
        supply = liquidity_values.supply_tokens
        self.liquidity.admin = liquidity_values.admin
        value_before: uint256 = liquidity_values.total
        value_after = convert(convert
          (value_after, int256) - liquidity_values.admin, uint256)
        self.liquidity.total = value_after
        self.liquidity.staked = liquidity_values.staked
  
                 self.totalSupply = liquidity_values.supply_tokens  # will be increase
        if staker != empty(address):
            self.balanceOf[staker] = liquidity_values.staked_tokens
        # ideal_staked is only changed when we transfer coins to staker
>>>     shares = supply * value_after // value_before - supply

    else:
        # Initial value/shares ratio is EXACTLY 1.0 in collateral units
        # Value is measured in USD
        shares = value_after
  
                 # self.liquidity.admin is 0 at start but can be rolled over if everyt
        self.liquidity.ideal_staked = 0  # Likely already 0 since supply was 0
        self.liquidity.staked = 0        # Same: nothing staked when supply is 0

27



        self.liquidity.total = shares    # 1 share = 1 crypto at first deposit
  
                 self.liquidity.admin = 0         # if we had admin fees - give them t
        self.balanceOf[staker] = 0

    assert shares >= min_shares, "Slippage"

    self._mint(receiver, shares)
    log Deposit(sender=msg.sender, owner=receiver, assets=assets, shares=shares)
    return shares

This means if value_before  drops to zero, the deposit  operation will revert.

Recommendations

Add an additional condition, if supply is non-zero but value_before  becomes
0, set shares to value_after

[L-04] fill_staker_vpool()  fails without
address setters

The fill_staker_vpool  function in the Factory contract is designed to add
missing virtual pool and staker components to existing markets. However, this
function cannot work effectively because it depends on implementation
addresses that cannot be updated after contract deployment.

The function checks for two conditions:

If market.virtual_pool == empty(address) AND self.virtual_pool_impl
!= empty(address) AND self.flash != empty(address)

If market.staker == empty(address) AND self.staker_impl !=
empty(address)

If these implementation addresses are initially set to empty(address)  during
deployment, the fill_staker_vpool  function will never be able to create
virtual pools or stakers for existing markets, as there's no way to set these
implementation addresses later.

28



def fill_staker_vpool(i: uint256):
    assert msg.sender == self.admin, "Access"
    market: Market = self.markets[i]
    if market.virtual_pool == empty
      (address) and self.virtual_pool_impl != empty(address) and self.flash != empty(a
        market.virtual_pool = create_from_blueprint(
            self.virtual_pool_impl,
            market.amm,
            self.flash
        )
    if market.staker == empty(address) and self.staker_impl != empty(address):
        market.staker = create_from_blueprint(
            self.staker_impl,
            market.lt)
    self.markets[i] = market

Add setter functions to update the implementation addresses after contract
deployment:

@external
def set_virtual_pool_impl(impl: address):
    assert msg.sender == self.admin, "Access"
    self.virtual_pool_impl = impl
    
@external
def set_staker_impl(impl: address):
    assert msg.sender == self.admin, "Access"
    self.staker_impl = impl

29


