
Yield Basis

Executive Summary
This audit report was prepared by Quantstamp, the leader in blockchain security.

Type DeFi AMM/Leveraged Liquidity

Timeline 2025-04-01 through 2025-04-16

Language Vyper

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification Leveraged Liquidity Paper

Source Code yield-basis/yb-core #16b1780

Auditors
Cameron Biniamow Auditing Engineer

Jonathan Mevs Auditing Engineer

Gereon Mendler Auditing Engineer

Documentation quality Low

Test quality Medium

Total Findings 8 Fixed: 6 Acknowledged: 2

High severity findings 3 Fixed: 3

Medium severity findings 2 Fixed: 2

Low severity findings 1 Fixed: 1

Undetermined severity
findings

0

Informational findings 2 Acknowledged: 2

Summary of Findings
Yield Basis is a decentralized finance system that facilitates leveraged liquidity provision and automated market making (AMM), with a focus on
mitigating impermanent loss. Built on Curve's AMM framework, the core innovation is a 2x leverage mechanism that transforms the price behavior
of liquidity positions to match that of the underlying tokens, effectively eliminating impermanent loss while preserving fee generation capabilities.

The protocol enables an admin to create a Yield Basis market for a specific Curve pool that includes crvUSD and a cryptocurrency, such as
WBTC. Users can deposit cryptocurrency into Yield Basis and specify the amount of crvUSD they want the protocol to take on as debt to create a
leveraged LP position in the Curve pool. Typically, the debt would be close in value to the deposited cryptocurrency. Once users deposit crypto,
they are issued yb tokens, representing their share of Curve LP tokens in the Yield Basis protocol. Users can burn their yb tokens during a
withdrawal to claim the crypto they initially deposited. Holders of yb tokens will earn fees from deposits and withdrawals. Optionally, users can
stake in LiquidityGauge , a simple ERC4626 contract, and earn rewards based on the rate of supplying the LP tokens directly to the Curve
pool.

Quantstamp was tasked with auditing the Yield Basis contracts to identify potential vulnerabilities and verify that the contracts operate as
expected. Specifically, the AMM , CryptopoolLPOracle , Factory , LT , and VirtualPool contracts were in scope. The
LiquidityGauge contract and all external contracts, such as the Curve contracts, were considered out of scope. The Yield Basis codebase

consisted of Vyper contracts, a technical paper detailing the mechanisms and mathematical equations used in the protocol, and a test suite with
moderate coverage.

The auditing process for the Yield Basis contracts has revealed several vulnerabilities that need to be addressed to ensure the security and
functionality of the protocol. Key vulnerabilities identified include:

Updating the staker address does not transfer the staker's balance to the new staker, resulting in incorrect calculations regarding the
staked balance of yb tokens.
The incomplete integration of flashloan functionality in the VirtualPool contract, which lacks critical validations required by ERC3156
and has an inaccessible function, as it is not marked as external .
The LT contract does not update the staker address correctly after a market is created, which could lead to operational issues if the two
contracts are out of sync.

The audit team recommends implementing robust validations to enforce safe operations, such as ensuring that addresses passed to critical
functions are not zero and applying a two-step ownership transfer pattern for administrative privileges to prevent potential misconfigurations. It is
also essential to enhance the test coverage for the VirtualPool contract to catch any erroneous functions and to fully document the logic
pertaining to functions like distribute_borrower_fees() , ensuring their intent and functionality are clear.

https://quantstamp.com/
https://github.com/yield-basis/yb-paper/tree/master/leveraged-liquidity-paper.pdf
https://github.com/yield-basis/yb-core
https://github.com/yield-basis/yb-core/commit/16b17801efabd430656d899b1b4ab672f836f0fc

Fix Review: The Yield Basis team has successfully addressed several vulnerabilities and suggestions in their system at commit
8b05ee9dec073941e7406cf8469e0e11797a436d . Vulnerabilities YIELD-1 through YIELD-6 are confirmed as fixed. Issues YIELD-7 and

YIELD-8 were acknowledged and deemed acceptable as per the client’s design decisions. All auditor suggestions were fixed except for S7, which
the client stated is desired behavior.

Beyond the fixes for vulnerabilities and suggestions listed in this report, the Yield Basis team made the following changes to the codebase:
1. Added functionality for emergency withdrawals to the LT contract.
2. Added functionality in the AMM and LT contracts to pause and unpause the contracts, altering the ability for users to deposit, withdraw,

and swap.
3. The VirtualPool contract was updated to include comments indicating that some logic may not yet be implemented.
4. DAO contracts were added to the codebase during the fix review, but remained out of scope.

ID DESCRIPTION SEVERITY STATUS

YIELD-1 Staker Address Update Does Not Transfer Staker's Balance • High Fixed

YIELD-2 No Fee Enforcement in LT Contract • High Fixed

YIELD-3 Incorrect Flashloan Integration • High Fixed

YIELD-4 Overleveraging After Allocator's Stablecoins Are Reclaimed • Medium Fixed

YIELD-5 Staker Is Not Updated in Some Cases • Medium Fixed

YIELD-6 Missing Setter Function for staker_impl • Low Fixed

YIELD-7 Curve Cryptopool donate() Function Is Poorly Defined • Informational Acknowledged

YIELD-8 LT Does Not Expose Burn Functionality • Informational Acknowledged

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence
Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

1. Code review that includes the following
1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and

functionality of the smart contract.
2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.

2. Testing and automated analysis that includes the following:
1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is

exercised when we run those test cases.
2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and
control based on the established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
Files Included

Repo: https://github.com/yield-basis/yb-core

Included Paths: contracts

Files Excluded

contracts/LiquidityGauge.vy

Operational Considerations
1. The Yield Basis contracts heavily depend on external contracts that were out of scope for this audit. While integrations of external contracts

are reviewed, the external contracts may contain vulnerabilities that could lead to potential loss of funds in the Yeild Basis contracts or
prevent functionality from working as expected. Specifically, the Yield Basis contracts rely on the following external contracts:

Curve Twocrypto pools: Used for supplied liquidity from users to create LP shares, which will be held by the Yield Basis protocol in
the AMM contracts.
Curve crvUSD ControllerFactory : Set as the mint_factory in the Factory.vy contract. The mint_factory contract
supplies crvUSD to the Factory contract and can reclaim its crvUSD for contract migration.
Curve AggregateStablePrice2 oracles: Used to obtain the USD price of STABLECOIN in the Curve Twocrypto pools.
Curve FlashLender : Used by the VirtualPool contract to obtain a flash loan for asset exchanges in the AMM contract.

2. There are inherent front-running risks when trading on this platform. Users should always specify a tolerable amount of slippage.
3. AMM contracts should never be assigned as the Factory allocators. The YB admin should take special care when assigning these

addresses. If an AMM were assigned, debt ratio accounting could be disrupted by supporting an arbitrary transfer.
4. The VirtualPool contract relies on a crvUSD flashloan provider to amplify price corrections through arbitrage. This only works with a

sufficiently large flashloan provider without a lending fee.
5. The contracts rely on a provider of crvUSD as debt for leverage trading. Allocation is a multi-step process. It requires the allocator to give

transfer approval to the factory, which is then processed by the admin calling set_allocator() in the factory to distribute them to
individual markets using their allocate_stablecoins() function. Deallocation follows a similar reversed flow.

6. The LT.withdraw_admin_fees() function requires the admin to be a contract, specifically the Factory contract. However, the LT
contract allows updates to the admin address, which can be updated to an EOA. Therefore, if the admin is updated to an EOA, the
function withdraw_admin_fees() will fail during execution.

Key Actors And Their Capabilities
AMM

DEPOSITOR (LT contract)
Can set the interest rate of the AMM .
Can adjust internal accounting for LP token deposits in the AMM contract, resulting from a user adding liquidity to a Curve
pool via LT.deposit() .
Can adjust internal accounting for LP token withdrawals from the AMM contract, which result from a user removing
liquidity from a Curve pool via LT.withdraw() .
Can collect interest fees generated in the AMM contract.
Can kill (pause) the AMM contract, preventing swaps, deposits, and fee collection.
Can unpause the AMM contract, allowing swaps, deposits, and fee collection.
Can update the exchange fee to a value of 10% or less.

Users
Can exchange Curve pool LP tokens and stablecoins (crvUSD).
Can initiate fee collection for the DEPOSITOR (LT contract).

Factory
admin

Can call add_market() to create a new market for a Curve pool. The admin will set the market's fee , rate , and
debt_ceiling .

Can deploy a VirtualPool and a staker contract for a previously created market via fill_staker_vpool() .
Can set the mint_factory contract address once. After the mint_factory is set, unlimited approval of
STABLECOIN is granted from the Factory contract to the mint_factory . Therefore, the mint_factory can

transfer unlimited STABLECOIN out of the Factory contract. The Factory contract cannot revoke the unlimited
approval to the mint_factory .

https://github.com/curvefi/twocrypto-ng/blob/58ed04c9d9fa8b7a4c497f99f20bafed33de8e8d/contracts/main/Twocrypto.vy
https://etherscan.io/address/0xC9332fdCB1C491Dcc683bAe86Fe3cb70360738BC#code
https://github.com/curvefi/curve-stablecoin/blob/master/contracts/price_oracles/AggregateStablePrice2.vy
https://github.com/curvefi/curve-stablecoin/blob/master/contracts/flashloan/FlashLender.vy

Can set an allocator and their allocation by executing set_allocator() . During the execution of
set_allocator() , STABLECOIN is transferred from the allocator to the Factory contract up to the
allocator 's allocation. If the allocator has allocated more STABLECOIN than their allocation, the allocator is

granted approval to transfer the difference between the allocated amount and the allocator 's allocation. The
allocator must claim the difference by transferring the STABLECOIN from the Factory contract in a separate

transaction. The admin can only transfer an allocation amount from the allocator if the allocator has previously
granted approval to the Factory contract.
Can update the agg contract address, which is referenced by future deployments of the CryptopoolLPOracle
contract, created in the add_market() function.
Can update the flash contract address, which is referenced by future deployments of the VirtualPool contract,
created in the add_market() function.
Can update the admin address by transferring admin privileges to a new address.
Can update the fee_receiver address to a new address.
Can update the emergency_admin address, which grants access to pause or unpause the AMM and LT contracts.
Can update the minimum admin fee.

LT
admin and Factory.admin()

Can set the amm contract address once.
Can update the admin address by transferring admin privileges to a new address.
Can set the interest rate of the amm contract.
Can set an allocator's allocation and transfer STABLECOIN from the admin (initially set as the Factory contract) to
the LT contract when the allocator's allocation exceeds their allocated amount. If the allocator's allocated amount
exceeds their allocation, the allocator is refunded the difference.
Can distribute borrower fees.
Can withdraw admin fees from the LT contract. Since admin fees are yb tokens, the LT contract mints yb tokens to
the fee_receiver of the Factory contract.
Can initially set the staker address to a new address. If the address has a non-zero yb token balance, the balance is
transferred to the Factory.fee_receiver() .
Can update the exchange fee in the AMM contract.
Can pause the LT and AMM contracts, preventing swaps, deposits, withdrawals, and fee collection.
Can unpause the LT and AMM contracts, allowing swaps, deposits, withdrawals, and fee collection.

Users
Can deposit the Curve pool deposit token and receive yb shares in return.
Can burn their yb shares to receive the respective Curve pool deposit tokens.
Can initiate the distribution of borrower fees, which collects crvUSD fees from the AMM contract and donates them to the
Curve pool.
Can transfer their yb shares to another address.
Can emergency withdraw when the LT contract is paused.

VirtualPool
Users

Can exchange Curve pool LP tokens and stablecoins (crvUSD).

Findings
YIELD-1 Staker Address Update Does Not Transfer Staker's Balance • High Fixed

Update
The client fixed the issue in commit f797e3043714ac28f58aed6bdb059f3398368f91 and provided the following explanation:

This was already fixed on Apr 4 by not allowing setting staker when the staker was already set

File(s) affected: contracts/LT.vy

Description: If the set_staker() function is called and the staker address is updated without transferring the previous staker's
balanceOf to the new staker, the following issues could arise:
1. The previous staker's balance would remain with the old staker's address, leaving the new staker with a zero balance. This could lead to a

situation where the new staker cannot perform any operations that require a balance, such as withdrawing staked tokens.
2. Incorrect calculations of staked tokens would result in the _calculate_values() function producing different values than expected.

Recommendation: When the set_staker() function is executed, transfer the previous staker's balance to the new staker. Otherwise,
consider implementing functionality to pause the protocol to prevent users from depositing or withdrawing while the staker is being updated and
the old staker's balance is transferred to the new staker.

YIELD-2 No Fee Enforcement in LT Contract • High Fixed

Update

The client fixed the issue in commit 30bf611d68363724044c281ec60afda151aeb4ca .
and provided the following explanation:

This was already fixed on Apr 5 by setting min_admin_fee in factory

File(s) affected: contracts/LT.vy

Description: LT.min_admin_fee is never assigned, preventing any admin fees to be charged from the LT contract.

Recommendation: Assign min_admin_fee during LT contract deployment. Optionally, allow the admin role to change its value. Further, test
this for correctness.

YIELD-3 Incorrect Flashloan Integration • High Fixed

Update
The client fixed the issue in commit 0fd7b45e0e8323a437804bcd9e6d0c373d0d0896 and provided the following explanation:

Mentioned issues were addressed in this commit, but this only can be considered fixed when VirtualPool
is actually tested (not as of commit time)

File(s) affected: contracts/VirtualPool.vy

Description: The VirtualPool contract makes use of a crvUSD flashloan provider to amplify user arbitrage for price correction. However, the
flashloan integration is incomplete.

1. The onFlashLoan() function needs to be external according to ERC3156.
2. The onFlashLoan() function should verify the initiator and token addresses.
3. The exchange() function calls a FLASH.ceiling() function that appears to be undefined based on the intended integrated flash

contract, Curve Flashlender.
4. The exchange() function should be @nonreentrant .

Recommendation: Make sure that the flashloan integration is complete and secure. Consider adding a test suite to further check the correctness
of the VirtualPool contract.

YIELD-4
Overleveraging After Allocator's Stablecoins Are Reclaimed

• Medium Fixed

Update
The client fixed the issue in commit 4515deffff5b816ea0069ab842b71794ea1d398b and provided the following explanation:

Added a condition in allocate_stablecoins() when deallocating

File(s) affected: contracts/AMM.vy , contracts/LT.vy

Description: If the Factory contract admin were to reclaim the Factory 's allocated crvUSD from the AMM contract via
LT.allocate_stablecoins() , the LT contract debt could become higher than half of the available crvUSD. In such a case, the protocol

could become insolvent, resulting in halted deposits and imbalanced reserves, potentially preventing the execution of the AMM.exchange()
function.

Recommendation: Consider adding a check in the LT.allocate_stablecoins() function that verifies the maximum debt will not be reached
after stablecoins are unallocated from the AMM contract.

YIELD-5 Staker Is Not Updated in Some Cases • Medium Fixed

Update
The client fixed the issue in commit f797e3043714ac28f58aed6bdb059f3398368f91 and provided the following explanation:

Already fixed in this commit on Apr 4

File(s) affected: contracts/Factory.vy

https://etherscan.io/address/0x26de7861e213a5351f6ed767d00e0839930e9ee1#code

Description: If the Factory creates a market using add_market() before a staker_impl is set, a staker can be added later by calling the
fill_staker_vpool() function. However, this function does not call the LT.setStaker() function to update the staker in the LT

contract.

Recommendation: Add the missing external call to mirror the behavior in add_market() .

YIELD-6 Missing Setter Function for staker_impl • Low Fixed

Update
The client fixed the issue in commit d9b8eebf84b2bca4b761a86080fe381ffff6a0ba and provided the following explanation:

Already fixed in this commit

File(s) affected: contracts/Factory.vy

Description: In the function fill_staker_vpool() , a staker contract is deployed for the given market if the staker_impl contract
address is set and if the staker contract was not already deployed from executing add_market() . However, the staker_impl contract
address is not updatable in the Factory contract. Therefore, if the staker_impl is not set during deployment, the staker contract will not
be deployed when fill_staker_vpool() is called as the following code block will never execute:

if market.staker == empty(address) and self.staker_impl != empty(address):
 market.staker = create_from_blueprint(
 self.staker_impl,
 market.lt)

Recommendation: Create a setter function for the staker_impl address.

YIELD-7
Curve Cryptopool donate() Function Is Poorly Defined

• Informational Acknowledged

Update
The client acknowledged the issue and provided the following explanation:

min_amount is minimal amount of LP token which could have been minted in the donation (since donation
is not symmetric). This will be rechecked once Curve cryptopool implementation will be fully done.

File(s) affected: contracts/LT.vy

Description: Using the distrubute_borrower_fees() function, anyone can force the LT contract to collect the fees from the releveraging
AMM and donate them to the underlying curve liquidity pool. It is unclear how this function works in detail, as only a stub is provided. Therefore
the purpose of the min_amount parameter is also unclear.

Recommendation: Make sure that this integration is correct.

YIELD-8 LT Does Not Expose Burn Functionality • Informational Acknowledged

Update
The client acknowledged the issue and provided the following explanation:

Proper token burns are disallowed to, for example, limit LP token inflation attacks. However, indeed,
people are free to transfer the token to an address which cannot be accessed

File(s) affected: contracts/LT.vy

Description: The LT contract also serves as a ERC20 liquidity token. The _transfer function attempts to stop token burns by disallowing
transfers to the zero address or the token contract, but no other burn function is exposed to properly handle this. Users may still choose to burn
tokens by transferring them to irretrievable addresses instead, making lively tokens harder to track.

Recommendation: Expose a burn() function to properly handle this.

Auditor Suggestions
S1 Missing Test Suite for VirtualPool Contract Fixed

Update
The client fixed the suggestion in commit 7ed1469d75a1922171e5fbd0ae3834839a7afd96 and provided the following explanation:

7ed1469d75a1922171e5fbd0ae3834839a7afd96
 6ca46c5205d4b204bdf2000a56f0905aa91cc14b
 ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293
 5fb6c13d4fdabf274acb450da7828041d63adc4e
 Test suite is written and few bugs are fixed. In addition, a possibility to replace VirtualPool
implementation if it is different on a live pool is inclided

File(s) affected: contracts/VirtualPool.vy

Description: The codebase contains a test suite for most major contracts, but not for the VirtualPool .

Recommendation: We highly recommend adding a comprehensive test suite to cover the VirtualPool integrations and calculations.

S2 Insufficient Input Validation Fixed

Update
The client fixed the suggestion in commit 3e3a542167b28adb35dd39d4715d14dcb700b473 and provided the following explanation:

Fixed in this and few other commits. Few comments:

fee_receiver can be 0x0 - that's a legitimate situation where claim of admin fees won't be
allowed (code adjusted accordingly)
flash lender can be reset to 0x0 - also ok to keep this possibility

File(s) affected: contracts/Factory.vy , contracts/AMM.vy , contracts/LT.vy

Description: The following contract functions lack sufficient input validation, which can lead to incorrect contract configuration. Since these
functions are all permissioned, there is no risk of users altering the contract state to undesired values. However, insufficient validation could
result in the Yield Basis team having to redeploy contracts with the correct configuration.

1. Factory.__init__() :
STABLECOIN is not checked against the zero address.
amm_impl is not checked against the zero address.
lt_impl is not checked against the zero address.
price_oracle_impl is not checked against the zero address.
agg is not checked against the zero address.
fee_receiver is not checked against the zero address.
admin is not checked against the zero address.

2. Factory.set_agg() :
agg is not checked against the zero address.

3. Factory.set_mint_factory() :
mint_factory is not checked against the zero address.

4. Factory.set_admin() :
new_admin is not checked against the zero address.

5. LT.set_staker() :
staker is not checked against the zero address.

6. AMM.set_rate() :
Consider enforcing bounds for the rate that can be assigned.

Recommendation: We recommend adding the relevant checks.

S3 Inconsistent Variable Naming Fixed

Update
The client fixed the suggestion in commit c5c88f7d5d1f15bd205c193ebb2edac61f4506e2 and provided the following explanation:

1. c5c88f7d5d1f15bd205c193ebb2edac61f4506e2 Rename to ASSET_TOKEN

2. e418b87e491f16c5f5f9d4de35ec4aacb150599e Rename to cryptopool only in LT contract because AMM can
potentially work with plain assets (universal)

3. Admin can be either EOA or factory which has admin, contained in the same storage varaible admin .
This is by design

4. 80def7a6acd947368b5f496295ecd3ca29586835, 440e04b60a9ca3099f43619f3df6ba06a3ea7040

File(s) affected: contracts/Factory.vy , contracts/LT.vy , contracts/AMM.vy , contracts/VirtualPool.vy

Description: Throughout the codebase, numerous instances exist where the variable naming of the same contract differs, leading to decreased
readability. The following contract variables use different names for the same address:

1. In the Factory contract, market.collateral_token is set as the deposit token of the Curve pool. In the LT contract, the same
deposit token is set as DEPOSITED_TOKEN . In the VirtualPool contract, the deposit token is set as CRYPTO . Consider changing
LT.DEPOSITED_TOKEN and VirtualPool.CRYPTO to COLLATERAL_TOKEN .

2. In the Factory contract, market.cryptopool is set as the address of the Curve pool. In the LT and AMM contract, the same Curve
pool is set as COLLATERAL . Consider changing COLLATERAL to CRYPTOPOOL in the LT and AMM contracts.

3. In the AMM contract, the DEPOSITOR is set as the LT contract address upon deployment. Consider changing DEPOSITOR to
LT_CONTRACT .

Recommendation: Implement the mentioned variable name changes for improved readability.

S4 Application Monitoring Can Be Improved by Emitting More Events Fixed

Update
The client fixed the suggestion in commit 8b05ee9dec073941e7406cf8469e0e11797a436d and provided the following explanation:

f3bb88a3df2ffc16894b186654ebebbaaca918f5
 762c11438a4a399e3c20de23abd49423ee0b6d5b
 d70b7f600c5e8ff66cac3b7976cca21c73afcaba
 dfba913a7049c893f4ee41e6a6f9040e36f447b7

File(s) affected: contracts/Factory.vy , contracts/LT.vy , contracts/AMM.vy

Description: In order to validate the proper deployment and initialization of the contracts, it is a good practice to emit events. Also, any important
state transitions can be logged, which is beneficial for monitoring the contract and tracking eventual bugs or hacks. Below, we present a non-
exhaustive list of events that could be emitted to improve application management:

1. Factory.fill_staker_vpool() : Emit an event containing the market.virtual_pool and market_staker addresses if those
contracts are deployed.

2. LT.set_amm() : Emit an event containing the amm and agg addresses.
3. LT.allocate_stablecoins() : Emit an event containing the allocator , stablecoin_allocation , and stablecoin_allocated .
4. LT.distribute_borrower_fees() : Emit an event containing the discount and amount .
5. AMM.set_killed() : Emit an event containing the status of is_killed .

Recommendation: Consider emitting the events.

S5 Precision Loss Fixed

Update
The client fixed the suggestion in commit 9b1ecc37a55f50e5b712a5375fc564a1396a375f and provided the following explanation:

Re-arranged calculating constants in init: exactly the same result but reads better.
 Other cases for precision loss are NOT fixed because fixing could potentially cause overflows. In
general, I am trying to avoid O(WAD)**3 appearing anywhere during computations due to this reason.

File(s) affected: contracts/AMM.vy

Description: Precision loss occurs when multiplying after division. The following functions may experience precision loss during calculations:
1. AMM.__init__() when calculating LEV_RATIO , MIN_SAFE_DEBT , and MAX_SAFE_DEBT
2. AMM.get_x0() when calculating the D value
3. AMM.withdraw() when calculating the withdrawn value
4. AMM._calculate() when calculating D .

Recommendation: Refactor the calculations to minimize precision loss by avoiding multiplying values after dividing them.

S6 Code Improvements Fixed

Update
The client fixed the suggestion in commit 6194bdce2970c29dcec689bc611d86758e416dc4 and provided the following explanation:

6194bdce2970c29dcec689bc611d86758e416dc4 instead of immutable, fee should have a setter!
 6113adeb5b20d47b467ae56b61af5d23c5a587ad LEVERAGE made public
 DEPOSITED_TOKEN_PRECISION already removed

File(s) affected: contracts/AMM.vy , contracts/Factory.vy , contracts/LT.vy

Description:
1. AMM.fee can be made immutable.
2. In Factory.vy , make LEVERAGE public.
3. DEPOSITED_TOKEN_PRECISION in LT.vy is not public and never used.

Recommendation: Consider including the suggestions.

S7 Critical Role Transfer Not Following 2-Step Pattern Acknowledged

Update
The client acknowledged the suggestion and provided the following explanation:

In prod, it will be the DAO which is the admin, not EOA. Having a timelock on top of the DAO creates a
need to vote for every change twice -> not good. Therefore removing that.

File(s) affected: contracts/Factory.vy , contracts/LT.vy

Description: Consider reassigning the admin in Factory.set_admin() and LT.set_admin() in a two-step process. The pending admin is
stored in the contract, and the admin is only transferred once the new admin claims the role. This prevents the contract from getting bricked by
accidentally assigning an address that is not controlled by the team.

Recommendation: Implement a two-step ownership transfer.

S8 Unverified Aggregator Price Asset Fixed

Update
The client fixed the suggestion in commit fd0b7d906b886e40f6480d30f1fc4630a63b7fb1 and provided the following explanation:

Included rough validation by price

File(s) affected: contracts/CryptopoolLPOracle.vy

Description: In the CryptopoolLPOracle contract, the price aggregator (AGG) contract address is set during deployment. However, no
validation ensures the AGG contract returns the USD price for the correct asset. Therefore, if the wrong price aggregator contract is set, the
functions price() and price_w() would return incorrect data.

Recommendation: During deployment of the CryptopoolLPOracle contract, validate that the AGG.STABLECOIN() matches
POOL.coins(0) .

S9 Disconnected Configuration Updates Fixed

Update
The client fixed the suggestion in commit 5fb6c13d4fdabf274acb450da7828041d63adc4e and provided the following explanation:

Flash can indeed be changed. That affects only VirtualPools, so added ability to replace those (which
can also receive further improvenents by themselves)
 As for oracles, it is by design that they cannot be changed. DAO must not be able to rug existing
oracles

File(s) affected: contracts/CryptopoolLPOracle.vy , contracts/Factory.vy , contracts/VirtualPool.vy

Description: The functions set_agg() and set_flash() in the Factory contract update the agg and flash contract addresses,
respectively. After calling either function and updating the contract address, future deployments of the CryptopoolLPOracle and the
VirtualPool contracts via add_market() and fill_staker_vpool() will reference the updated agg and flash contracts. However,

any previously deployed CryptopoolLPOracle or VirtualPool contracts will still reference the agg or flash contracts set at the time
of deployment. Thus, if a vulnerability is found in the agg or flash contracts, requiring the contracts to be updated via set_agg() or
set_flash() , all previously deployed CryptopoolLPOracle and VirtualPool contracts will continue to interact with the vulnerable
agg or flash contracts.

Recommendation: Consider refactoring the CryptopoolLPOracle and VirtualPool contracts so that they get the agg and flash
contract addresses through external calls to the Factory contract. When the agg or flash contract addresses are updated, all
deployments of the CryptopoolLPOracle and VirtualPool contracts reference the correct agg and flash contracts.

S10 Enforce Decimals of STABLECOIN and COLLATERAL Fixed

Update
The client fixed the suggestion in commit d3aace71ade4278ff6f5462eae04f9b4af048b1a .

File(s) affected: contracts/Factory.vy

Description: While it is clear that the stablecoin and crypto pools used in the system are intended to be crvUSD or Curve Cryptopools,
accounting will be severely affected if tokens or LP tokens used are different than 18 decimals. Therefore, this should be enforced at the Factory
level.

Recommendation: In Factory.__init__() ensure that the STABLECOIN assigned has 18 decimals, or that it is the expected crvUSD
contract. In Factory.add_market() , ensure the LP token has 18 decimals.

S11 LT.withdraw_admin_fees() Will Revert in the Case of Negative v.admin Fixed

Update
The client fixed the suggestion in commit 63270ea0854f751fc50c847cc2bb6868354b047a and provided the following explanation:

Custom error added

File(s) affected: contracts/LT.vy

Description: LT.withdraw_admin_fees() will revert if v.admin is negative, as that value is attempted to be converted to a uint256.
Instead of reverting due to an integer issue, revert earlier with a custom error.

Recommendation: Assert that v.admin is non-negative before converting to uint256 .

Definitions
High severity – High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity – Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity – The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

Informational – The issue does not post an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined – The impact of the issue is uncertain.

Fixed – Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated – Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged – The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Appendix
File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise,
after the security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition
or potential vulnerability that was not within the scope of the review.

Files

Repo: https://github.com/yield-basis/yb-core

a3a...1a5 ./contracts/AMM.vy

dd1...783 ./contracts/CryptopoolLPOracle.vy

541...50b ./contracts/Factory.vy

85a...92c ./contracts/LT.vy

5ec...95d ./contracts/VirtualPool.vy

Test Suite Results
The test suite included 15 test cases. All test cases were run successfully with the following commands.

Fix Review Update: Additional tests were added to the test suite. All 19 test cases were run successfully.

> pipx install virtualenv
> virtualenv -p python3 .venv
> source .venv/bin/activate
> pip3 install poetry
> poetry add git+https://github.com/vyperlang/titanoboa.git#ee4cb70a5e41713dd863f4fa1e0b6d8c53180cd2
> poetry install
> pytest -n <num_of_cores> -vv

=== test
session starts
==
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.5.0 -- /home/appuser/workspace/projects/AT-
2627/yield_basis-yb-core-master-github~full/.venv/bin/python
cachedir: .pytest_cache
hypothesis profile 'default' -> deadline=timedelta(milliseconds=1000000),
database=DirectoryBasedExampleDatabase(PosixPath('/home/appuser/workspace/projects/AT-2627/yield_basis-
yb-core-master-github~full/.hypothesis/examples'))
rootdir: /home/appuser/workspace/projects/AT-2627/yield_basis-yb-core-master-github~full
configfile: pyproject.toml
plugins: titanoboa-0.2.5, cov-6.0.0, anyio-4.9.0, hypothesis-6.129.1, forked-1.6.0, xdist-3.6.1
8 workers [15 items]
scheduling tests via LoadScheduling

tests/amm/test_unitary.py::test_view_methods
tests/lt/test_factory.py::test_create_market
tests/amm/test_unitary.py::test_exchange
tests/amm/test_unitary.py::test_deposit_withdraw
tests/lt/test_factory.py::test_factory
tests/amm/test_stateful.py::test_stateful_amm
tests/amm/test_unitary.py::test_set_rate
tests/amm/test_adiabatic_trade.py::test_adiabatic
[gw5] [6%] PASSED tests/amm/test_unitary.py::test_exchange
tests/lt/test_unitary.py::test_stake
[gw3] [13%] PASSED tests/amm/test_unitary.py::test_view_methods
tests/lt/test_unitary.py::test_allocate_stablecoins
[gw2] [20%] PASSED tests/amm/test_unitary.py::test_set_rate
tests/lt/test_unitary.py::test_informational
[gw6] [26%] PASSED tests/lt/test_factory.py::test_factory
tests/lt/test_unitary.py::test_collect_fees
[gw7] [33%] PASSED tests/lt/test_factory.py::test_create_market
[gw6] [40%] PASSED tests/lt/test_unitary.py::test_collect_fees

[gw5] [46%] PASSED tests/lt/test_unitary.py::test_stake
[gw3] [53%] PASSED tests/lt/test_unitary.py::test_allocate_stablecoins
[gw2] [60%] PASSED tests/lt/test_unitary.py::test_informational
[gw4] [66%] PASSED tests/amm/test_unitary.py::test_deposit_withdraw
tests/lt/test_unitary.py::test_deposit_withdraw
[gw4] [73%] PASSED tests/lt/test_unitary.py::test_deposit_withdraw
[gw1] [80%] PASSED tests/amm/test_stateful.py::test_stateful_amm
tests/lt/test_st_staker.py::test_price_return
[gw0] [86%] PASSED tests/amm/test_adiabatic_trade.py::test_adiabatic
tests/lt/test_price_return.py::test_price_return
[gw1] [93%] PASSED tests/lt/test_st_staker.py::test_price_return
[gw0] [100%] PASSED tests/lt/test_price_return.py::test_price_return

== 15 passed in 4663.21s (1:17:43)
===

Changelog
2025-04-17 - Initial report
2025-04-25 - Final report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are
not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for
the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the
extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the
use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any
output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree
that access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE
THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials
identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or programming aspects
that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee
its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of making
any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for
any product or service advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information
to, called by, referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any
other websites or mobile applications, and we will not be a party to or in any way be responsible for monitoring any transaction between you and
any third party. As with the purchase or use of a product or service through any medium or in any environment, you should use your best
judgment and exercise caution where appropriate.

© 2025 – Quantstamp, Inc. Yield Basis

