
0

Yield Basis Core

24-02-2025 - 22-05-2025

1

Table of contents

1. Project brief 4

2. Finding severity breakdown 6

3. Summary of findings 7

4. Conclusion 7

5. Findings report 8

Incorrect token_reduction calculation 8

Missing precisions in fee calculation 8

Accumulated interest nullification 9

LT does not account for admin fees 9

Unbounded max_token_reduction 10

Critical

Griefing LT.distrubute_borrower_fees() 11

Precision error can infinitely increase token reduction 11

Admin fees in the killed state 12

Insufficient precision in value deltas 12

High

LT.preview_deposit() inaccuracy in calculating shares 13

LT.preview_deposit() incorrect calculation if the full stake 14

Staker can transfer shares to himself 14

Accumulated interest nullification by set_rate 15

Depositing to the staker address 16

Medium

2

AMM.get_dy isn't limited by AMM debt amount 17

DOS when trying to repay % on debt 17

Incorrect staker migration process 18

Staker can call LT.withdraw() function 18

pricePerShare inflation 19

Default return value and assertions 20

Pricing value in stablecoin instead of fiat 20

First depositor can break contract 20

Incorrect application of max_token_reduction 21

Medium

Lack of the LT.min_admin_fee setter 21

Outdated debt value exposed via public variable 21

LT admin fee collection 22

ERC20.decimals() incorrect interface 22

Optional debt breaks the LT.preview_deposit() 22

Misspelled function name 23

LT.preview_withdraw() and LT.withdraw() produce mismatched amounts 23

Unused state variable 23

Disallow CryptoPools with more than 2 tokens 23

Disallowing swaps in an empty AMM 24

Front-running of allocation decrease 24

Missing sanity checks in LT.set_amm() 24

Preventing the AMM value from being zero when totalSupply in the LT is positive 25

fee_receiver sanity check 25

Add event for AMM.set_killed() 25

Informational

3

Naming inconsistency 25

Redundant variable initialization 26

Informational

4

1. Project brief

Yield Basis

Yield Basis Core

24-02-2025 - 22-05-2025

Project Log

6d46e5751482beea6c476d603cc5ceb678266fd1

f3b90d719ee0a19c65389a12a643c0eb24584ff1

8a41e77c179628356e2c391a05ea4e6da3160374

ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293

70d54eebedd39cfc46dab5407a5807c5626406e5

2dd3d03104a34d8e617009bb98a2534998066af3

4308d9bd1ed8d5728745988249ffff2d06a5f183

Short Overview

Yield Basis is a new and ambitious protocol that offers a solution to the problem of Impermanent Loss. By using leverage, LPs

provide liquidity in a CryptoSwap pool, and the price change of their position occurs linearly with the change in the asset price

(unlike the сlassical provision, where the dependency follows a square root function). To create and maintain leverage, YB uses

a specialized leverage AMM, which ensures a constant level of leverage through arbitrage. The system consists of two

contracts working in tandem:

LT is the user-facing contract that liquidity providers will interact with. It implements the deposit and withdrawal flows, as

well as an emergency withdrawal mechanism. In the basic scenario, users deposit in the deposit token (BTC, ETH, etc.),

and within the function, a stablecoin is borrowed from the leverage AMM. These two tokens are then jointly supplied to a

DEX pool. The emergency withdrawal function allows users to withdraw the deposit token in edge cases or when there are

imbalances in the pool.

AMM is the leverage AMM, which holds LP tokens and stablecoins for borrowing. In this system, LP tokens act as collateral

for the leveraged positions of liquidity providers, while the debt is represented by the borrowed stablecoin. With a

leverage of 2, half of the position (the collateral) covers the debt. The leverage AMM maintains a constant leverage ratio

Title Description

Client

Project name

Timeline

Date Commit Hash Note

04-03-2025 Initial Commit

11-03-2025 Commit with fixes

18-03-2025 Commit with fixes

21-04-2025 Reaudit

30-04-2025 Commit with reaudit fixes

19-05-2025
Commit with fixes and muldiv

usage in formulas

22-05-2025 Reaudit commit with final fixes

5

through arbitrage opportunities. The curve formula follows the classic invariant xy = k, but with an additional dependency

on an external oracle.

Project Scope

The audit covered the following files:

LT.vy AMM.vy CryptopoolLPOracle.vy

https://github.com/yield-basis/yb-core/blob/4308d9bd1ed8d5728745988249ffff2d06a5f183/contracts/LT.vy
https://github.com/yield-basis/yb-core/blob/4308d9bd1ed8d5728745988249ffff2d06a5f183/contracts/AMM.vy
https://github.com/yield-basis/yb-core/blob/4308d9bd1ed8d5728745988249ffff2d06a5f183/contracts/CryptopoolLPOracle.vy

6

2. Finding severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the following

classification:

Bugs leading to assets theft, fund access locking, or any other loss of funds to be transferred to any

party.

Bugs that can trigger a contract failure. Further recovery is possible only by manual modification of

the contract state or replacement.

Bugs that can break the intended contract logic or expose it to DoS attacks, but do not cause direct

loss of funds.

Bugs that do not have a significant immediate impact and could be easily fixed.

Based on the feedback received from the Client regarding the list of findings discovered by the Contractor, they are assigned

the following statuses:

Recommended fixes have been made to the project code and no longer affect its security.

The Client is aware of the finding. Recommendations for the finding are planned to be resolved in

the future.

Severity Description

Critical

High

Medium

Informational

Status Description

Fixed

Acknowledged

7

3. Summary of findings

5 (5 fixed, 0 acknowledged)

4 (4 fixed, 0 acknowledged)

14 (13 fixed, 1 acknowledged)

17 (16 fixed, 1 acknowledged)

40 (38 fixed, 2 acknowledged)

4. Conclusion

During the audit of the codebase, 40 issues were found in total:

5 critical severity issues (5 fixed)

4 high seveiry issues (4 fixed)

14 medium severity issues (13 fixed, 1 acknowledged)

17 informational severity issues (16 fixed, 1 acknowledged)

The final reviewed commit is 4308d9bd1ed8d5728745988249ffff2d06a5f183

Severity # of Findings

Critical

High

Medium

Informational

Total

https://github.com/yield-basis/yb-core/tree/4308d9bd1ed8d5728745988249ffff2d06a5f183
https://github.com/yield-basis/yb-core/tree/4308d9bd1ed8d5728745988249ffff2d06a5f183
https://github.com/yield-basis/yb-core/tree/4308d9bd1ed8d5728745988249ffff2d06a5f183

8

5. Findings report

CRITICAL-01 Incorrect token_reduction calculation
Fixed at:

8ceb25a

Description

Line: LT.vy#L200

The LT contract contains the _calculate_values() function in which token_reduction is calculated. However, there is an error

in the formula for obtaining it.

The current token_reduction formula looks like this:

token_reduction: int256 = unsafe_div(staked * new_total_value - new_staked_value * total, total - staked)

The correct formula looks like this:

Incorrect token_reduction calculation leads to incorrect calculation of the YB totalSupply. This leads to incorrect behavior of

all functions that use LT._calculate_values() function. It also affects the incorrect calculation of withdrawal values.

Recommendation

We recommend bringing the formula to the correct form.

CRITICAL-02 Missing precisions in fee calculation
Fixed at:

2daf4ba

Description

Line: LT.vy#L174

The LT contract contains the _calculate_values() function in which f_a is calculated. However, there is an error in the formula

for obtaining it.

The current f_a formula looks like this:

f_a: int256 = convert(

 10**18 - (10**18 - self.min_admin_fee) * self.sqrt(convert(10**18 - staked // total, uint256)) // 10**18,

 int256)

The current formula does not take into account that staked value is always less than total. This means that staked // total

value will always be zero.

Incorrect f_a calculation leads to incorrect calculation of admin and dv_use parts. Accordingly, this leads to an incorrect

calculation of new_total_value, new_staked_value, token_reduction and YB staker & total values.

Recommendation

We recommend changing the formula like this:

f_a: int256 = convert(10**18 - (10**18 - self.min_admin_fee) * self.sqrt(convert(10**36 - staked * 10**36 // total, uint256)) //

10**18, int256)

tokenReduction = ​

newTotalValue−newStakedValue
staked∗newTotalValue−totalSupply∗newStakedValue

https://github.com/yield-basis/yb-core/commit/8ceb25a8fd64e1a7f8bf4bd0ce92934b7965f216
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L200
https://github.com/yield-basis/yb-core/commit/2daf4ba0a05311998feef35a85ce59b47dbd30c6
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L174

9

CRITICAL-03 Accumulated interest nullification
Fixed at:

62543da

Description

Lines:

AMM.vy#L255

AMM.vy#L266

AMM.vy#L382

The contract has two functions for tracking current debt: AMM._debt() and AMM._debt_w(). Calls to AMM._debt_w()

update self.rate_time with the current block.timestamp, marking all previously accumulated interest as accounted.

AMM.exchange() function calculates debt with interest via _debt_w(), but then modifies self.debt directly without applying

the accrued interest.

AMM.collect_fees() does not store value, returned by _debt_w(), in self.debt.

Therefore, accumulated interest can be nullified by performing any exchange or collect_fees operation, causing financial

loss to the allocator.

POC: test_incorrect_debt_update

Recommendation

We recommend always updating the global self.debt with the value returned by _debt_w() after each _debt_w() call to

maintain an accurate accounting of accrued interest.

CRITICAL-04 LT does not account for admin fees
Fixed at:

8a41e77

Description

The total value calculated via AMM.value_oracle() contains the total value, including the admin fees.

At the same time, the LT contract uses the LT.liquidity.total variable to store total value without admin fees. Which leads to a

mismatch in calculating user & admin values.

For the LT._calculate_values() function, such discrepancy means that prev_value + dv_use won't be close enough to the

cur_value. This, in turn, creates an artificial difference in values, increasing/decreasing both user value and admin fees for

the next invocations with no yield (one could invoke transfers to the staker with 0 shares).

This also creates inconsistencies in the deposits/withdrawals, as shares/output values are dependent on the value without

accounting for the admin fees.

The LT.withdraw() implementation calculates the output value from AMM as a shares/totalSupply proportion. If this is

expressed in terms of the values, then the fraction is calculated as token_value/liquidity.total, hence users will withdraw the

admin portion of value.

However, to calculate the actual proportion, it is necessary to take into account the admin fees. This proportion will look like

this: token_value/(admin_fees + liquidity.total).

Recommendation

We recommend deducting the admin fees from the total value of the AMM.

https://github.com/yield-basis/yb-core/commit/62543dac7088491dd71900bc3bca29ac1515fc4b
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L255
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L266
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L382
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L168
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L168
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L168
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L173
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L173
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L173
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L230
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L230
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L230
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L378
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L378
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L378
https://github.com/yield-basis/yb-core/commit/8a41e77c179628356e2c391a05ea4e6da3160374
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L330
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L330
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L330
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L172
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L172
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L172
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L289
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L330

10

CRITICAL-05 Unbounded max_token_reduction
Fixed at:

35a14e7

Description

Line: LT.vy#L305

The max_token_reduction formula does not include the staked variable. As the comment states, the maximum should be

enforced only when eps = (supply - staked) / supply < 1e-8.

Unbounded max_token_reduction forces losses on all users by minting shares to staker, even when there is no stake.

For example:

1. staked = 0, hence token_reduction = 0.

2. value_change < 0, then max_token_reduction < 0.

3. token_reduction = min(token_reduction, max_token_reduction) = max_token_reduction.

Recommendation

We recommend applying max_token_reduction when the eps < 1e-8 condition is met.

https://github.com/yield-basis/yb-core/commit/35a14e7a23b008c4e1c14045bd5c29ffb9c784b4
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L305

11

HIGH-01 Griefing LT.distrubute_borrower_fees()
Fixed at:

e31555c

Description

Line: AMM.vy#L378

AMM.collect_fees() function doesn't have access control. An attacker can front-run an admin's transaction, which calls

LT.distrubute_borrower_fees(). Thus, the fees will be stuck on the LT.

Recommendation

We recommend adding only AMM.DEPOSITOR() access control to AMM.collect_fees() function.

Client's comments

Instead of access control, used STABLECOIN.balanceOf(self). This allows to also donate something to LT to increase

the value used to boost the pool if necessary. We normally do not store and stablecoins in LT

HIGH-02 Precision error can infinitely increase token reduction
Fixed at:

135f993

Description

The LT._calculate_values() calculates the token_reduction variable that is meant to reduce the staker shares to keep their

value constant.

token_reduction: int256 = unsafe_div(staked * new_total_value - new_staked_value * supply, new_total_value -

new_staked_value)

The new_total_value changes faster than the new_staked_value, but can be very close if the staked shares amount is

almost equal to the total supply. The denominator new_total_value - new_staked_value value can become very small, but

not zero.

The precision error arises in the d_staked_value calculation.

elif _to == staker:

 # Increase the staked part

 d_staked_value: uint256 = liquidity.total * _value // liquidity.supply_tokens

This formula rounds down the d_staked_value, which leads to cases when staked_value != total_value for

staked = totalSupply. But we can't round up in this case, as the same issue will arise if one stakes all his shares minus 1.

The scenario is possible if two users decide to deposit into the LT and after some time they stake their shares.

Or, if the first (and only) depositor already staked all their shares, an arbitrary user can force the denominator to +-1 (with as

small as possible input collateral), which leads to token_reduction >= totalSupply, which, essentially, permanently breaks

the contract.

Recommendation

We recommend depositing a small amount of collateral during deployment to avoid cases when staked_value ~ total_value.

Client's comments

Added limits on token_reduction in calculate_values. The issue appears because unstaked APR goes to infinity which

means that we need to burn "staked" shares too fast to keep up with that. That singularity is not good, so worked

around that when too small fraction is unstaked (effectively that'd limit the unstaked APR to not go to infinity)

https://github.com/yield-basis/yb-core/commit/e31555cc83bdc8b5393ff10cfb7cf91e5e183606
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L378
https://github.com/yield-basis/yb-core/commit/135f9931a4f0608f720db0f9f41a8820e6def57f
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L193
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L193
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L193
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L517
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L517
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L517

12

HIGH-03 Admin fees in the killed state
Fixed at:

70d54ee

Description

Line: LT.vy#L672

The LT.withdraw_admin_fees() function is callable when AMM is killed, which creates ambiguity around the killed state:

1. LT.emergency_withdraw() already handles admin fees.

2. Normally LT._calculate_values() can not be invoked during the pause.

This also allows minting tokens in the killed state, potentially DOSing LT.emergency_withdraw() for the last user.

Recommendation

We recommend restricting admin withdrawals during the killed state.

HIGH-04 Insufficient precision in value deltas

Fixed at:

6220f1f

2dd3d03

Description

Line: LT.vy#L274

The token reduction formula is introduced to maintain the staker value constant despite a positive yield.

Intuitively, a negative value change should not trigger token reduction, although in reality, LT will produce negative

token_reduction, which slightly increases unstaked losses.

If we look at the token reduction formula:

1. Let token_reduction < 0;

2. new_total_value - new_staked_value >= 0 is always true;

3. staked * new_total_value - new_staked_value * supply < 0 =>

4. new_staked_value > new_total_value * staked / supply.

By design, the staked value is at most a proportion of the total (ideal_staked); hence, condition 4. must become true due to

precision errors.

The closer staked shares to supply, the bigger fee admin takes: (10**18 - f_a) -> 0. Which affects the precision of the

dv_use = value_change * (10**18 - f_a) // 10**18 variable.

The dv_s = dv_use * staked // supply formula rounds towards zero, which makes condition 4. true if value_change < 0.

We discovered, that by increasing the precision of dv_use the token_reduction values are more predictable, reducing the

need/complexity of max_token_reduction.

Recommendation

We recommend increasing the precision of the delta and value calculations.

dv_use: int256 = value_change * (10**18 - f_a)

prev.admin += (value_change * 10**18 - dv_use) // 10**18

...

new_total_value: int256 = max(prev_value * 10**18 + dv_use, 0)

new_staked_value: int256 = max(v_st * 10**18 + dv_s, 0)

...

total=convert(new_total_value // 10**18, uint256),

staked=convert(new_staked_value // 10**18, uint256),

https://github.com/yield-basis/yb-core/commit/70d54eebedd39cfc46dab5407a5807c5626406e5
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L672
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L574
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L574
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L574
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L253
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L253
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L253
https://github.com/yield-basis/yb-core/commit/6220f1ffb7c530c4ee6ce7e2c7f9398680cd1f07
https://github.com/yield-basis/yb-core/commit/2dd3d03104a34d8e617009bb98a2534998066af3
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L274

13

MEDIUM-01 LT.preview_deposit() inaccuracy in calculating shares Acknowledged

Description

Lines:

LT.vy#L228

AMM.vy#L338-L339

CurveCryptoPool.calc_token_amount() calculates LP amount, but does not simulate adding asset, debt to the pool reserves

LT.vy#L228. Virtual reserves are calculated at the old price(excluding asset, debt) AMM.vy#L338-L339, which leads to

inaccuracies in the calculation of the share.

CurveCryptoPool.add_liquidity() calculates LP and adds asset, debt to the pool reserves LT.vy#L305. Virtual reserves are

calculated at the updated price(taking into account asset, debt) AMM.vy#L281, AMM.vy#L295.

LP call preview deposit:

assets=1000000000000000000, debt=100000000000000000000000

totalSupply = 0

lp_tokens=316224603739177764819

p_o=632455532033675866398 - the oracle price does not take into account deposited funds

value=99997999979999000140450 - virtual reserves are calculated based on the old price

collateral_price=100000000000000000000000

deposit_amount=999979999799990001

LP call deposit:

assets=1000000000000000000, debt=100000000000000000000000

totalSupply = 0

lp_tokens=316224603739177764819

p_o=632458694327147502135 - the price changed after taking into account the addition of the deposited amount

value_after=99998999989999800192291 - virtual reserves are calculated based on the updated price

collateral_price=100000000000000000000000

deposit_amount=999989999899998001

`̀̀

Recommendation

We recommend adding a function that provides a price that takes into account the amount to be deposited into the

CurveCryptoPool contract.

Client's comments

The difference in p_o is rather small: it can be due to depositor's own fees earned if out deposit is asymmetric. This has

really minor effect, but fairly complicated to fix because this would involve simulating cryptopool logic to both calculate

fees and do tweak_price() after. Doesn't look feasible for the minor effect here, especially considering that ideal deposit

to do is almost symmetric anyway

https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L228
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L338-L339
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L228
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L338-L339
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L305
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L281
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L295

14

MEDIUM-02 LT.preview_deposit() incorrect calculation if the full stake
Fixed at:

0b1fc0b

Description

Lines: LT.vy#L231-L232

In the case when all deposits were at staked or minted on the balance of LT.staker(), the contract calculates the shares based

on the amount deposited LT.vy#L236-L237, but this is correct only for the first deposit.

Let's look at the example of LT._calculate_values()

staked == total - all deposits staked to staker

token_reduction = N

staked_tokens=staked - token_reduction

supply_tokens=total - token_reduction

Recommendation

We recommend calculating the shares based on the delta v and removing the condition LT.vy#L232.

MEDIUM-03 Staker can transfer shares to himself
Fixed at:

de858a8

Description

Lines: LT.vy#L500-L520

LT._transfer() function allows users to send shares to other accounts. This function has the following structure:

if staker in [_from, _to]:

 if _from == staker:

 ...

 else:

 ...

self.balanceOf[_from] -= _value

self.balanceOf[_to] += _value

In case if the staker will send shares to himself, only first if will be executed that reduces the staked part of the sender. It

allows the staker to reduce liquidity.staked variable to zero, which makes token_reduction inside LT._calculate_values()

also zero and increases supply_tokens for everyone.

Recommendation

We recommend prohibiting sending tokens when address to == address from.

Client's comments

Staker is going to be a staker contract which would not be able to do it. Probably not an issue, but good to check, so

included this check inside the condition

https://github.com/yield-basis/yb-core/commit/0b1fc0b81f9d1f0764efbbc3f928ee62dc1e9f1f
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L231-L232
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L236-L237
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L232
https://github.com/yield-basis/yb-core/commit/de858a88b02c711884b94d6b7960c11647417d3a
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L500C5-L520C61

15

MEDIUM-04 Accumulated interest nullification by set_rate
Fixed at:

b2dde57

Description

Lines: AMM.vy#L152-L164

The AMM.set_rate() function misses saving accumulated interest, along with overwriting self.rate_time, which leads to the

reset of accumulated fees.

POC: test_set_rate_debt_nullification

Recommendation

We recommend updating self.debt with accumulated fees in AMM.set_rate() function.

@external

@nonreentrant

def set_rate(rate: uint256) -> uint256:

 assert msg.sender == DEPOSITOR, "Access"

 debt: uint256 = self._debt_w()

 rate_mul: uint256 = self.rate_mul

 self.rate = rate

 self.debt = debt

 log SetRate(rate=rate, rate_mul=rate_mul, time=block.timestamp)

 return rate_mul

https://github.com/yield-basis/yb-core/commit/b2dde5727526c4cacbb03352d0616be809df2233
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L152-L164
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L152
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L152
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L152

16

MEDIUM-05 Depositing to the staker address
Fixed at:

11c306f

Description

Line: LT.vy#L257

The LT.deposit() function allows users to provide a receiver address.

One could provide receiver = staker, which bypasses all the logic defined in the LT._transfer() function.

Generally, such action would simply donate minted LPs to shareholders due to token reduction, but there are corner cases if

LT is empty:

1. Bob is attempting to deposit to the LT contract.

2. Alice front-runs Bob's tx and deposits to the staked address, which keeps ideal_staked = 0 & staked = 0 but increases

the staker balance.

3. Bob's deposit tx will invoke LT._calculate_values() and calculate token reduction:

token_reduction: int256 = unsafe_div(staked * new_total_value - new_staked_value * total, new_total_value -

new_staked_value)

Where new_staked_value = 0, hence token_reduction = balanceOf(staker) = self.totalSupply.

4. Once tx is outside of the LT._calculate_values(), the supply variable will hold the previous value. It will enter a

conditional block, where it will use the new totalSupply = 0, which results in 0 shares minted for Bob.

supply: uint256 = self.totalSupply

...

liquidity_values: LiquidityValuesOut = empty(LiquidityValuesOut)

if supply > 0:

 liquidity_values = self._calculate_values()

...

if supply > 0:

 supply = liquidity_values.supply_tokens # = 0

 ...

 shares = supply * v.value_after // v.value_before - supply # = 0

5. Alice deposits her own assets to take control of Bob's deposit value.

This scenario will only work if someone deposits with min_shares = 0, this can be used to DOS the contract until someone

decides to donate his funds. Thus, an attacker can constantly front-run valid deposits to DOS, the cost of DOS is equal to

the cost of unblocking the contract.

Recommendation

We recommend restricting direct deposits to the staker address.

https://github.com/yield-basis/yb-core/commit/11c306fec4d92e090c56f969771aee584aca2ed1
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L257
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L450
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L450
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L450

17

MEDIUM-06 AMM.get_dy isn't limited by AMM debt amount
Fixed at:

e97c5f4

Description

AMM.get_dy() can be used by external contracts to calculate the amount_out.

If i=0, j=1 and amount_in > AMM.get_debt() then AMM.exchange() revert AMM.vy#L256, because a pool can sell collateral

only for the amount of debt.

However, the AMM.get_dy() function isn't limited by AMM debt amount and returns incorrect value.

Let's look at the example:

AMM.get_debt() = 100000000000000000000000

External contract call AMM.get_dy(0, 1, 200000000000000000000000)

amount_in = 200000000000000000000000 - amount_in X2 debt

collateral = 316224603739177764819

x = 399996999969999400576875

y = 158111116006572139345

amount_out 157006693318477386095 - incorrect amount

Recommendation

We recommend adding the checkin_amount <= AMM.get_debt() for this case.

MEDIUM-07 DOS when trying to repay % on debt
Fixed at:

fbf682e

Description

Lines: AMM.vy#L396-L398

AMM.collect_fees() calculates fees amount based on the accumulated % on the debt AMM.vy#L393. Debt increases over

time. If the AMM has not earned enough fees, then an attempt to transfer fees reverts due to an insufficient balance of

stablecoins on the AMM contract.

Thus, the admin can't partially compensate % of the debt.

Recommendation

We recommend limiting the collected amount by the available stablecoin balance in the AMM.collect_fees() function.

Client's comments

Checking balanceOf to not revert at the fee claim

https://github.com/yield-basis/yb-core/commit/e97c5f44b455a84a0699b20ef2d60493bd5297d0
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L256
https://github.com/yield-basis/yb-core/commit/fbf682e526c00d37373a4f9e964dbe90c778fc4d
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L396-L398
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L393

18

MEDIUM-08 Incorrect staker migration process
Fixed at:

f797e30

Description

Lines: LT.vy#L416-L421

LT.set_staker() function allows to set a new staker address. This function does not take into account existing shares of the

new staker, which may influence total_supply and LT.pricePerShare() significantly. When admin calls LT.set_staker(), users

can frontrun this transaction and send shares directly to future staker using LT.transfer() functionality to influence

LT.pricePerShare() and staked value without using intended LT.transfer() code parts for sending shares to the staker. The

attached test demonstrates that LT.pricePerShare() increases if the user will frontrun LT.set_staker() call and send shares to

a future staker compared to the situation when shares are transferred as intended after LT.set_staker() call. The ideal_staked

variable is not considered during the migration process.

POC: test_change_staker

Recommendation

We recommend implementing a safe migration process. Existing shares of the new staker can be sent to admin to avoid

incorrect staked value calculations. It is also advisable to allow the staker to be set only once.

MEDIUM-09 Staker can call LT.withdraw() function
Fixed at:

084c208

Description

Line: LT.vy#L309

The LT.withdraw() function allows any LT shares holder to call themselves.

However, liquidity.staked and liquidity.ideal_staked are not recalculated. If the staker calls the withdrawal function, he will

receive his funds but leave behind an incorrect state. This leads to undefined behavior of the contract and violation of its

logic.

Recommendation

We recommend limiting the LT.withdraw() function call for the staker.

https://github.com/yield-basis/yb-core/commit/f797e3043714ac28f58aed6bdb059f3398368f91
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L416C1-L421C13
https://github.com/yield-basis/yb-core/commit/084c2081990f651694e74635f8f032a84ac0af55
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L309

19

MEDIUM-10 pricePerShare inflation
Fixed at:

8cbf5b9

Description

Line: LT.vy#L393

pricePerShare is calculated as the ratio of liquidity.total to liquidity.supply_tokens — essentially, it represents the share of

the AMM value that belongs to users (excluding admin value), relative to the total supply. In the absence of admin fees, users

can fully withdraw all value from the AMM or leave a very small portion behind.

If a tiny number of shares is left, for example, several weis — the low values and limited precision can allow pricePerShare to

be manipulated. Such a price shift can occur during a withdrawal process when a user leaves just 1 share. Since the

pool.remove_liquidity_fixed_out() function also takes small fees, those are treated as yield and will be reflected in the next

LT._calculate_values() call. The situation becomes significantly worse if an admin fee is set in the LT or if liquidity.admin is

much larger than liquidity.total. In such a case, an attacker, right after creating a new YB market, can deposit the LT, then

perform a series of swaps in the crypto pool to drive up the LP token price and accumulate yield for both liquidity.total and

liquidity.admin.

After that, the attacker can call LT.withdraw() and leave only 1 share in the LT. Since the AMM still holds a large admin value,

which greatly exceeds the remaining liquidity.total, the impact of the fees collected during

pool.remove_liquidity_fixed_out() will be much more significant (as larger values suffer less from losses due to integer

rounding). As a result, the pricePerShare will increase substantially.

PoC: test_inflation

Recommendation

We recommend calculating share price considering liquidity.admin value. For that, shares can be virtually minted to the

admin in case of positive yield, so the formula for pricePerShare:

@external

@view

def pricePerShare() -> uint256:

 v: LiquidityValuesOut = self._calculate_values(self._price_oracle())

 return (v.total + v.admin) * 10**18 // (v.supply_tokens + v.admin_tokens)

Additionally, to avoid corner cases when working with very small values, we recommend performing a pre-mint so that both

the LT and the AMM always have non-zero values (a modified version of the DEAD_SHARES logic).

Client's comments

To prevent pumping the price per share, I disallowed withdrawals which leave only a tiny nonzero fraction in the AMM.

This still allows to deposit dust to prevent full withdrawal for the last person ("griefing attack"), but it's easy to solve by a

small deposit to unblock the last depositor. And it is better than allowing to pump the price per share.

https://github.com/yield-basis/yb-core/commit/8cbf5b96b0e1cd6b927f9c3d5e45ae32f2ea2eba
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L393
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L376C51-L376C77
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L376C51-L376C77
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L376C51-L376C77

20

MEDIUM-11 Default return value and assertions
Fixed at:

b0e9d4a

Description

Some external calls are made without default_return_value=True. It is essential as some tokens do not return boolean

values.

1. In the LT.deposit() the STABLECOIN.transferFrom() and DEPOSITED_TOKEN.transferFrom();

2. In the LT.withdraw() the STABLECOIN.transfer() and the DEPOSITED_TOKEN.transfer();

3. In the AMM.__init__() the stablecoin.approve() and collateral.approve().

There are also missing assertions:

1. In the LT.allocate_stablecoins();

2. In the AMM.collect_fees().

3. In the AMM.__init__().

Although stablecoin is meant to be crvUSD, other tokens are possible.

Recommendation

We recommend adding missing assertions and the default_return_value=True parameter to token calls.

MEDIUM-12 Pricing value in stablecoin instead of fiat
Fixed at:

e61318b

Description

Lines:

CryptopoolLPOracle.vy#L35

CryptopoolLPOracle.vy#L40

LT.vy#L169

LT.vy#L237

LT.vy#L329

The CryptopoolLPOracle is used in the LevAMM contract to provide the current price of the pool's LP tokens in crvUSD,

treating it as fiat USD value. The same issue arises in the LT contract's internal pool pricing logic LT._calculate_values().

This will better reflect the position's value as well as enable an additional peg to the crvUSD.

Recommendation

We recommend converting values to fiat USD.

MEDIUM-13 First depositor can break contract

Fixed at:

9625570

aed08ae

Description

Line: LT.vy#L303

The token_reduction calculation includes division by total and staked values difference

(new_total_value - new_staked_value).

The first depositor can grief the newly deployed LT contract by depositing and staking their shares.

The _calculate_values() function invocation will always revert, permanently breaking further deposits.

Recommendation

We recommend introducing a limit for staking or setting a staker address sometime after the contracts are deployed and

deposits are made.

https://github.com/yield-basis/yb-core/commit/b0e9d4a5d15a30ebfbe77fea23050d2e6b7755ae
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L298
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L298
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L298
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L299
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L299
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L299
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L384
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L384
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L384
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L385
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L385
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L385
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L119
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L119
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L119
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L120C13-L120C31
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L120C13-L120C31
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L120C13-L120C31
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L427
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L427
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L427
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L425
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L425
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L425
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L94
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L94
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L94
https://github.com/yield-basis/yb-core/commit/e61318b7f2cda674bdddfaeb278c22b920b42fbf
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/CryptopoolLPOracle.vy#L22
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/CryptopoolLPOracle.vy#L27
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L169
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L237
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L329
https://github.com/yield-basis/yb-core/commit/96255706ce4cdc06fdbfa27bf149ccba10641be7
https://github.com/yield-basis/yb-core/commit/aed08ae5893ff7ab74b14b577862746974cc4350
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L303

21

MEDIUM-14 Incorrect application of max_token_reduction
Fixed at:

35a14e7

Description

Line: LT.vy#L313

Current implementation of max_token_reduction limits token_reduction as following:

token_reduction = min(token_reduction, max_token_reduction)

This approach is incorrect for negative values. When dealing with negative values, using min() will select the more negative

value (smaller in absolute terms), which contradicts the intended limiting behavior.

Recommendation

We recommend limiting token_reduction to the minimum absolute value, while keeping token_reduction sign.

INFORMATIONAL-01 Lack of the LT.min_admin_fee setter
Fixed at:

30bf611

Description

The LT contract has LT.min_admin_fee parameter. This parameter is not set during initialization and does not have a setter

function. In the current implementation the LT.min_admin_fee is always zero.

Recommendation

We recommend adding a setter function for this value.

INFORMATIONAL-02 Outdated debt value exposed via public variable
Fixed at:

2e57d3b

Description

Line: AMM.vy#L51

AMM contract exposes debt via the public variable:

debt: public(uint256)

However, this value is always outdated as it doesn't account for accumulated interest since the contract was last used,

leading to potential inaccuracies if external contracts rely on it.

Recommendation

We recommend setting debt as private to prevent such cases and ensure external contracts rely on AMM.get_debt() for

accurate debt retrieval.

https://github.com/yield-basis/yb-core/commit/35a14e7a23b008c4e1c14045bd5c29ffb9c784b4
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L313
https://github.com/yield-basis/yb-core/commit/30bf611d68363724044c281ec60afda151aeb4ca
https://github.com/yield-basis/yb-core/commit/2e57d3b2fa82fcda4c89f63c17a9f7efd6b9f1f2
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L51
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L183
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L183
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/AMM.vy#L183

22

INFORMATIONAL-03 LT admin fee collection
Fixed at:

6aaaf2e

Description

Currently, there is no method for admin fee collection in the LT contract.

An admin may share losses with all the other users, so the fee value may be negative.

In a scenario, where the next state update makes a total admin fee negative, an admin is incentivized to front-run it to take

his fees before an update deducts them.

Recommendation

We recommend implementing the admin fee collection function and invoking the LT._calculate_values() before all the state-

altering actions.

INFORMATIONAL-04 ERC20.decimals() incorrect interface Acknowledged

Description

Lines:

AMM.vy#L10

LT.vy#L10

LT.vy#L33

According to the standard ERC20.decimals() -> uint8 IERC20Detailed.vyi#L17.

Recommendation

We recommend fixing the interface following the standard.

Client's comments

It is deliberately uint256 in the code, to avoid type conversion. Boudns are checked when we calculate 18 - decimals

INFORMATIONAL-05 Optional debt breaks the LT.preview_deposit()
Fixed at:

991f057

Description

Lines:

LT.vy#L226

AMM.vy#L125

The LT.preview deposit() function has an optional debt parameter which defaults to max_value(uint256).

However, the transfer of such a parameter completely breaks the logic of calculating the value of the AMM contract.

With a large value of the debt in the AMM.get_x0() function, the discriminant of the quadratic equation will be less than zero

and the function will return an error when trying to calculate the square root.

Recommendation

We recommend implementing logic for the debt==max_value case, in which the contract calculates the best possible debt.

Client's comments

Since deposit() has the debt argument necessary, I simply removed the default value

https://github.com/yield-basis/yb-core/commit/6aaaf2ea97c15b84c35dca5532fa474b89f00d53
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L172
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L172
https://github.com/yield-basis/yb-core/blob/6d46e5751482beea6c476d603cc5ceb678266fd1/contracts/LT.vy#L172
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L10
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L10
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L33
https://github.com/vyperlang/vyper/blob/master/vyper/builtins/interfaces/IERC20Detailed.vyi#L17
https://github.com/yield-basis/yb-core/commit/991f057b7f56e1689d3811cc6f2c791b35075d2d
file:///app/src/react/public/%5BLT.vy#L273%5D(https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/LT.vy#L226)
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/contracts/AMM.vy#L125

23

INFORMATIONAL-06 Misspelled function name
Fixed at:

3c0b8b3

Description

Line: LT.vy#L408

The function LT.distrubute_borrower_fees() has the word distribute misspelled.

Recommendation

We recommend fixing the misspelling.

INFORMATIONAL-07 LT.preview_withdraw() and LT.withdraw() produce mismatched amounts
Fixed at:

c010116

Description

Lines:

LT.vy#L273

LT.vy#L351

LT.preview_withdraw() produces a slightly higher withdrawal amount than LT.withdraw():

Preview withdraw: 99996995043667078856

Assets withdrawn: 99996995043667078792

Delta: 64

This discrepancy is caused by rounding differences in LevAMM._withdraw(). The error magnitude, while small, increases

proportionally with the withdrawal amount.

Recommendation

We recommend aligning the calculations in both LT.preview_withdraw() and LT.withdraw() to ensure consistent results.

INFORMATIONAL-08 Unused state variable
Fixed at:

cf575bd

Description

Line: LT.vy#L370

The LT.withdraw() function contains an unused state variable.

Recommendation

We recommend deleting an unnecessary variable.

INFORMATIONAL-09 Disallow CryptoPools with more than 2 tokens
Fixed at:

559ed69

Description

Line: LT.vy#L170

The contract does not restrict pools to two tokens, which will break the share calculation logic if more are present.

Recommendation

We recommend adding a check to ensure the pool contains exactly two tokens.

https://github.com/yield-basis/yb-core/commit/3c0b8b3498abbedd8ae2e3238b57d1ce6d36d6d1
https://github.com/yield-basis/yb-core/blob/f3b90d719ee0a19c65389a12a643c0eb24584ff1/yield-basis/yb-core.git/contracts/LT.vy#L408
https://github.com/yield-basis/yb-core/commit/c010116f815bb689fc5e3caf5e479646704f1587
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L273
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L351
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L331
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L331
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L331
https://github.com/yield-basis/yb-core/commit/cf575bd9217a05e39a3278ca11e95ae7788f8c82
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L370
https://github.com/yield-basis/yb-core/commit/559ed69bea379f852c1e00373fca19ca9a74afed
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L170

24

INFORMATIONAL-10 Disallowing swaps in an empty AMM
Fixed at:

a40fcdd

Description

Line: AMM.vy#L251

Safe limits prevent excessive destabilization of the AMM, but when the AMM is empty, with both collateral and debt equal to

zero, it’s still possible to execute a trade. This can happen when selling the collateral token into the AMM. If the swap amount

and the oracle price are small, the limit checks can be bypassed because the calculated coll_value at Line 139 will be zeroed,

and safe limit checks will be bypassed.

Recommendation

We recommend disallowing swaps in empty AMM for state consistency.

INFORMATIONAL-11 Front-running of allocation decrease
Fixed at:

35ce293

Description

Line: LT.vy#L448

The deposit logic in the LT contract allows the creation of a position using only borrowed stablecoins. This doesn’t harm

other LPs — in fact, it is even beneficial for them — but it enables transferring free stablecoins from the AMM to the crypto

pool. This property can be exploited to front-run allocation reductions in the LT.

Recommendation

We recommended sending transactions with allocation decrease via private mempools or checking the allocation limit

during deposit.

Client's comments

Made the method which withdraws the rest of allocation callble by anyone (not just admin). If someone front-runs

setting the allocation by the admin, anyone can submit a private mempool tx without requiring a governance process

subsequently.

In addition, added a public method to check whether there's a reentrancy in the AMM: it's needed here because we

don't call the AMM but directly transfer to/from there, and doing so during an ongoing transfer would be not good.

INFORMATIONAL-12 Missing sanity checks in LT.set_amm()
Fixed at:

1b3ea6b

Description

Line: LT.vy#L403

The LT.set_amm() function lacks validation that ensures the AMM contract's tokens match the LT contract's tokens, creating

potential inconsistencies.

Recommendation

We recommend adding token-matching validation checks.

https://github.com/yield-basis/yb-core/commit/a40fcdda2c231ff18196a5f2953718518c9980ad
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L251
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/AMM.vy#L139
https://github.com/yield-basis/yb-core/commit/35ce29330c9f0d59c2fafcbb69fb3920f7488844
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L448
https://github.com/yield-basis/yb-core/commit/1b3ea6bd23e086dfa9a364fa5533cf216dee8f67
https://github.com/yield-basis/yb-core/blob/8a41e77c179628356e2c391a05ea4e6da3160374/contracts/LT.vy#L403

25

INFORMATIONAL-13
Preventing the AMM value from being zero when totalSupply in the LT is

positive

Fixed at:

0ba1276

Description

If the AMM holds a small amount of value or if LT holders experience prolonged negative APR, which can result from high

borrowing rates or very frequent rebalances, this situation may occur. Given the current liquidity levels in crypto pools and

the launch of LT for blue-chip tokens, it's an unlikely scenario, but the issue can still arise.

In such a case, when liquidity is almost entirely withdrawn (with only a few wei remaining in the LT), the value in the AMM can

drop to zero. This would block future deposits: with totalSupply > 0, the minted shares would be calculated based on

value_after and value_before, leading to a division by zero.

Recommendation

We recommend resetting totalSupply when the AMM value reaches zero, or using DEAD_SHARES mechanics, to ensure the

AMM always holds a non-zero value.

INFORMATIONAL-14 fee_receiver sanity check
Fixed at:

75bf0d8

Description

Line: LT.vy#L672

The LT.withdraw_admin_fees() function mints shares directly to fee_receiver.

Minting shares to the staker address creates inconsistencies as it bypasses relevant accountings.

Recommendation

We recommend introducing a sanity check fee_receiver != staker.

INFORMATIONAL-15 Add event for AMM.set_killed()
Fixed at:

8b05ee9

Description

Line: AMM.vy#L462

The admin can change the is_killed variable, but no event is emitted to record the change, making off-chain monitoring more

difficult.

Recommendation

We recommend emitting an event with the new value.

INFORMATIONAL-16 Naming inconsistency
Fixed at:

3b01f01

Description

Line: LT.vy#L183

Comment in LT.vy constructor uses deposit_token, but the input parameter is named asset_token.

Recommendation

We recommend changing deposit_token = WBTC to asset_token = WBTC to match the function parameter name.

https://github.com/yield-basis/yb-core/commit/0ba1276c9d6de099817e347238b1486c96a8fece
https://github.com/yield-basis/yb-core/commit/75bf0d8ad2a3db6a09d5ca1b8713e5cae3c5a760
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L672
https://github.com/yield-basis/yb-core/commit/8b05ee9dec073941e7406cf8469e0e11797a436d
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/AMM.vy#L462
https://github.com/yield-basis/yb-core/commit/3b01f01206daa049a09ac8828866c4e70e32f96f
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L183

26

INFORMATIONAL-17 Redundant variable initialization
Fixed at:

d444506

Description

Lines:

LT.vy#L301

LT.vy#L509

LT.vy#L557

1. Variable token_reduction in LT._calculate_values() function is initialized to 0 and then immediately reassigned on the

next line. This initialization is unnecessary and can be removed.

2. max(lv.admin, 0) operation is redundant because code only executes when lv.admin > 0.

Recommendation

We recommend removing redundant initializations and operations.

https://github.com/yield-basis/yb-core/commit/d4445065b4ede052084ced9ffd4b88fa15e0a412
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L301
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L509
https://github.com/yield-basis/yb-core/blob/ca95f0bc942d633b2bf4e7b5c2ad78e7f15ab293/contracts/LT.vy#L557

0

